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How to start to find an end?
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BFS — This cannot be the end(-vertex)!

Idea of BFS:
initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v; i++;
foreach unvisited neighbor w of v with w /∈ Q do

append w to Q
end

end

Example

a

b d

c

e f

g

• Can d be endvertex of a BFS?
Yes! Any BFS starting at e ends at d

• Can c be endvertex of a BFS?
No! all non-neighbors of c
have distance 2 from c but excentricity 3
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What is so great about ends?

• end-vertex of BFS: helpful for fast diameter computation

• end-vertex of LexBFS: is simplicial in chordal graphs
key property for recognition and many opt. alg. in chordal graphs

• end-vertex of LexBFS in cocomparability graphs: always a source/sink in some transitive
orientation

• end-vertex of LDFS in cocomparability graphs: start-vertex of hamiltonian path (if it exists)

• end-vertex of LexBFS in AT-free graphs: dominating pair vertex

• end-vertices of graph searches in general: their properties are the key for many multi-sweep
algorithms on graphs
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On the search for the right search

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS
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LexBFS — This cannot be the end(-vertex)!

Idea of LexBFS:
iteratively select vertex with lexicogr. largest label;
selected vertex appends number (n− i) to label of
neighbors

foreach v ∈V do label(v) = /0;
label(s) = {0}; n = |V |
for i← 1 to n do

v← unnumbered vertex with lexic. largest label l(v);
σ(i)← v;
foreach unnumb. neighbor w of v do

append (n− i) to l(w)
end

end

Theorem (Corneil, K., Lanlignel, 2010)
It is NP-hard to decide whether a given vertex is
end-vertex of some LexBFS.

Example

a

b d

c

e f

g

• g is end-vertex of a BFS: acbdefg

• Can g be end-vertex of a LexBFS?
No!
The only non-neighbor of g is a, thus
have to start LexBFS at a
However, by LeXBFS selection rule
g will be visited before e and f
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What makes this problem hard?

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS
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BFS — This cannot be the end(-vertex)!

Idea of BFS:
initialize queue Q = {s}
iteratively take top vertex v from Q
add all non-queue neighbors of v to end of Q

Q = {s}; i=1;
foreach v ∈ Q do

σ(i)← v; i++;
foreach unvisited neighbor w of v with w /∈ Q do

append w to Q
end

end

Theorem (Charbit, Habib, Mamcarz ’14)
It is NP-hard to decide whether a given vertex is
end-vertex of some BFS.

Example

a

b d

c

e f

g
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Known results for the end-vertex problem

BFS LBFS DFS LDFS MCS MNS GenS

All Graphs NPC NPC NPC NPC ? ? P

Weakly Chordal NPC NPC NPC NPC ? ? P
Chordal ? ? NPC ? ? P P
Interval ? P ? ? ? P P
Split P P NPC P ? P P

• Corneil, Köhler, Lanlignel, 2010

• Berry, Blair, Bordat, Simonet, 2010

• Charbit, Habib, Mamcarz, 2014

• Kratsch, Liedloff, Meister 2015: Exact algorithms for BFS and DFS (O∗(2n));
strong connection between end-vertex for DFS and Hamiltonian path problem

Our work:

• maximal neighborhood search (MNS)

• maximum cardinality search (MCS)
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On the search for the right search

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS
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MNS — Maximal Neighborhood Search

Idea of MNS:
At each step pick: a vertex whose set of neighbors
already explored is maximal with respect to set
inclusion.

foreach v ∈V do label(v) = /0;
label(s) = {0};
for i← 1 to n do

v← unnumbered vertex with inclusion maximal label
l(v);

σ(i)← v;
foreach unnumb. neighbor w of v do

append i to l(w)
end

end

→ every LexBFS and every LexDFS is an MNS

→ if G chordal then MNS perfect elim. ordering

Example

a

b d

c

e f

g

resulting MNS ordering: adcgfbe

How Hard is end-vertex for MNS?
Charbit, Habib, Mamcarz: end-vertex problem for MNS open
(in their complexity table: ?(P) for this problem) 11/19



MNS — How Hard is End-Vertex Problem?

Theorem
The end-vertex problem for MNS is NP-complete.

Proof: (reduction from 3-SAT).
let I be instance of 3-SAT:

• variables of I : x1, . . . ,xn

• clauses of I : C1, . . . ,Ck

construct graph G(I ) = (V,E) as follows:

• literal vertices xi, xi: compl. of perf. matching

• clause vertices c j : independent set

• additional vertices b, s, t

• c j : adjacent to all literal vertices except “its own”

• b: adjacent to all literal vertices

• s: adjacent to all vertices but b and t

• t: adjacent to all but s

s

x1
x1

x2 x2

x3 x3

x4
x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

t
b
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MNS — NP-Completeness Proof

Question
Can t be end-vertex of an MNS?

Observations

• If MNS chooses a clause vertex before vertex b or
b before s, then t cannot be the end-vertex.

• For t being the end-vertex of MNS, the algorithm
has to choose s and an assignment right at the
beginning.

• For each instance I of 3-SAT, the graph G(I ) is
weakly chordal.

Theorem
3-SAT instance has satisfying assignment iff
t is end-vertex of an MNS in G

s

x1
x1

x2 x2

x3 x3

x4
x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

t
b
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On the search for the right search

Generic Search

BFS DFS

MNS

MCSLexBFS LexDFS

→ every MNS for a chordal graph is a perfect elimination ordering
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MCS — Maximum Cardinality Search

Idea of MCS:
At each step: pick a vertex whose set of neighbors
already explored is maximal with respect to
cardinality.

foreach v ∈V do label(v) = /0;
label(s) = {0};
for i← 1 to n do

v← unnumbered vertex with label l(v) that has
maximum cardinality;

σ(i)← v;
foreach unnumb. neighbor w of v do

append i to l(w)
end

end

How hard is end-vertex problem of MCS?
Nothing known up to now.

Example

a

b d

c

e f

g

resulting MCS ordering: adcgbfe
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MCS — How Hard is End-Vertex Problem?

Theorem
The end-vertex problem for MCS is NP-complete.

Idea of proof: (reduction from 3-SAT).

• If 3-SAT instance has satisfying assignment then exists MCS ordering with t being end-vertex.

ss′

C1 C2 C3

C

C1 C2 C3
t

x1 x2 x3 x4

• 3-SAT satisfying assignment iff t is end-vertex of MCS
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MCS — End-Vertex in Split Graphs

Theorem
G = (C∪ I,E) split graph (C maximal clique, I indep. set).
t ∈V is end-vertex of some MCS ordering σ iff (I) t is simplicial and (II) the neighborhoods of the
vertices with a smaller degree than t are totally ordered by inclusion.

Idea of proof. ⇒.
Assume t is the last vertex in σ .

(I) G is split, thus it is chordal. Hence, end-vertex of MCS is simplicial [Tarjan, Yannakakis, 1984]

(II) Assume there exist u,v with smaller degree than t such that N(u)* N(v) and N(v)* N(u).

• can show that u,v ∈ I

• wlog v taken before u in MCS

• ⇒ all neighbors of v visited before u

• as N(u), N(v) incomparable: ∃ w ∈ N(v)\N(u)

• ⇒ all vertices of C visited before u

• now label of t larger than label of u, thus t chosen before u
Contradiction!

C I

t
N(t)

C I

t

u

v

N(u)

N(v)
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MCS — End-Vertex in Split Graphs

Theorem
G = (C∪ I,E) split graph (C maximal clique, I indep. set).
t ∈V is end-vertex of some MCS ordering σ iff (I) t is simplicial and (II) the neighborhoods of the
vertices with a smaller degree than t are totally ordered by inclusion.

Idea of proof. ⇐.

• t be simplicial and
neighborhoods of vertices with smaller degree than t totally ordered by set inclusion.

• Define U := {u ∈V | d(u)< d(t)}.
• t simplicial⇒U ⊆ I.

• take the neighborhoods of all vertices u ∈U in the order of the inclusion ordering.

• Every time the complete neighborhood of a vertex u is taken: take u.
⇒ all these vertices are taken before t.

• If t ∈C: then U = I and we can take the remaining vertices of C in an arbitrary ordering, with t
being last.

• If t ∈ I: we first take the remaining vertices of C. Since the neighborhood of t is not greater than
the neighborhood of all remaining vertices, we can take t as last vertex.

17/19



MCS — End-Vertex in (Unit) Interval graphs

Theorem (Gilmore and Hoffman, 1964)
A graph G is an interval graph if and only if the maximal cliques of G can be linearly ordered such that,
for every vertex v ∈ G, the maximal cliques containing v occur consecutively.

Lemma
Let G = (V,E) be an interval graph and let C1,C2, . . . ,Ck be linear order of the maximal cliques of G.
Then t ∈V is the last vertex of some MCS-ordering σ of G if:

1. t is simplicial, and

2. If Ci is the unique clique containing t, then i = 1 or i = k or Ci−1 ∩Ci ⊆Ci ∩Ci+1 and
|Ci ∩Ci+1| ≤ |C j ∩C j+1| for all j > i, or the same holds for the reverse order Ck,Ck−1, . . . ,C1.

Theorem
Let G = (V,E) be a unit interval graph and let C1,C2, . . . ,Ck be linear order of the maximal cliques of G.
Then t ∈V is the last vertex of some MCS-ordering σ of G iff:

1. t is simplicial, and

2. If Ci is the unique clique containing t, then i = 1 or i = k.
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Conclusions

• Finding an end is surprisingly difficult

• MCS is a quite challenging search for end-vertex problem

• These simple graph searches are not well understood.

• Big step: repeated application of (LBFS) searches (Dusart and Habib)

• Need more and better tools for analysing search algorithms

• A lot of work has to be done here

... and there is no time for retirement!

Thank you Michel and lets keep working!
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