A Tasty Retrospective for After Lunch

Martin Charles Golumbic University of Haifa

A celebration with Michel Habib

Graph Sandwich Problems

Guessing and Filling-in Missing Edges

Dealing with Partial Information

missing data and deducing consistency

Take your favorite graph property Π

The Π graph sandwich problem asks:

Given: - a vertex set V - a mandatory edge set E^1 - a larger edge set E^2 ($E^1 \subseteq E^2$) Is there a (sandwich) graph G = (V, E)with $E^1 \subseteq E \subseteq E^2$ that satisfies property Π ?

Optional edges : $E^2 - E^1$ Forbidden edges: $V \times V - E^2$ Remark. The Classical Recognition Problem is the case where $E^2 = E^1$ nothing optional !

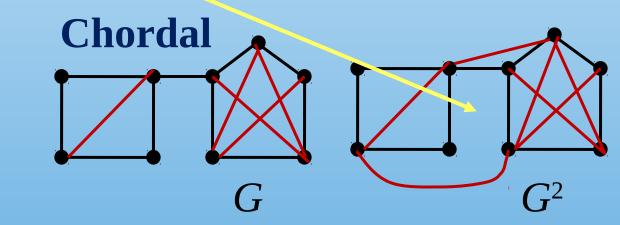
Tasty Examples

A Chordal Graph Sandwich

chordal graph: every cycle of length \geq 4 has a chord

Cycle C₅

 G^1



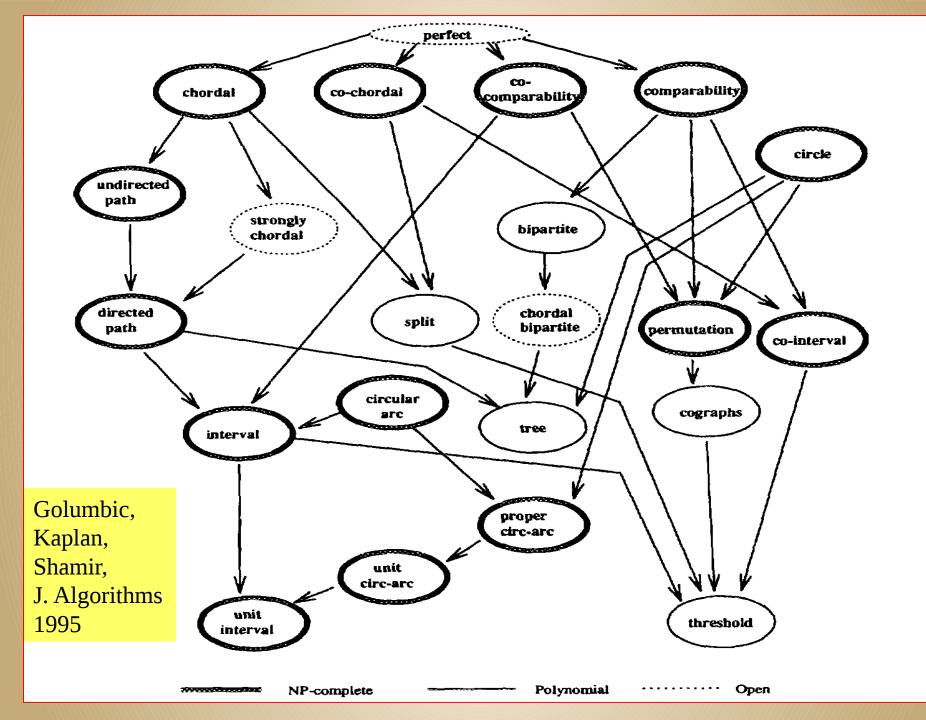
Algorithmic Graph Theory

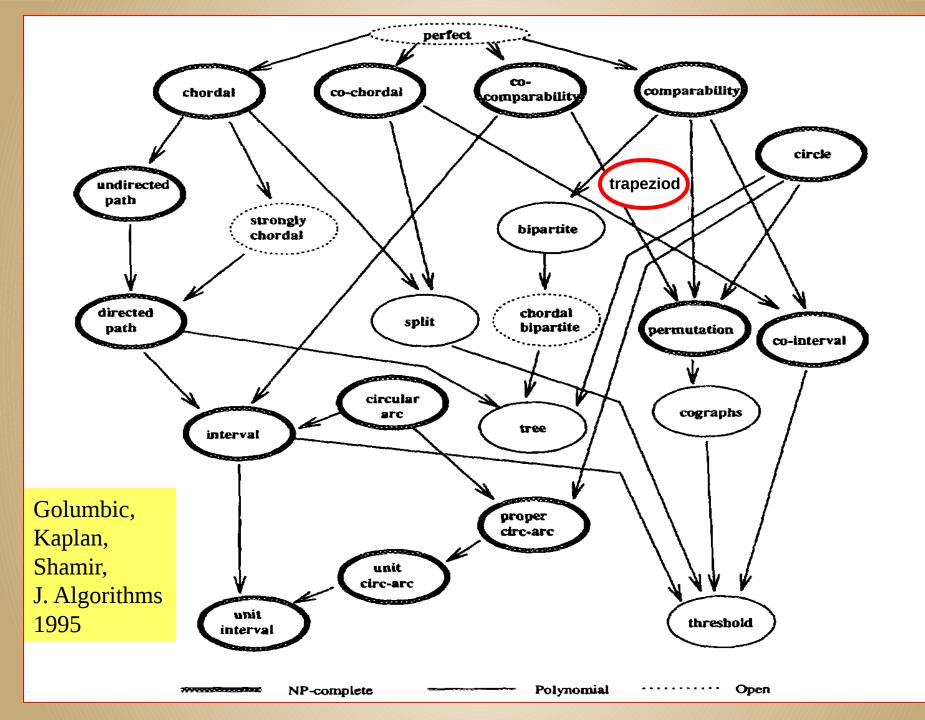
Early references on Graph Sandwich Problems:

M.C. Golumbic, R. Shamir, J. ACM 1993 Interval Graphs (NP-complete)

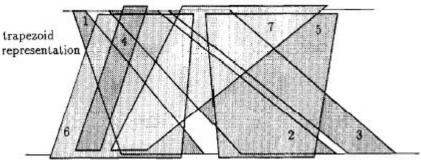
H.L. Bodlaender, M.R. Fellows and T.J. Warnow, ICALP 1992 Chordal Graphs (NP-complete)

M.C. Golumbic, H. Kaplan, R. Shamir, J. Algorithms 1995 Permutation, Comparability, Circle, ... (NP-complete) Split, Threshold, Cographs, ... (Polynomial)





Trapeziod Graph Sandwich Problem



 Recognition is Polynomial (Ma and Spinrad [1994], Langley [1995]) Sandwich is NP-Complete You won't find this in the literature Reduction uses the Betweenness Problem Similar to the proof for permutation graphs, cocomparability graphs, and unit interval graphs Golumbic, Kaplan, Shamir [1995]

Diamond-free Graph Sandwich Problem

If G¹=(V,E¹) has a diamond, then its "non-edge"
will be <u>forced</u> to be in any sandwich solution!
So check that it is among the optional edges E² \ E¹.
Then either <u>ADD IT</u> to the (potential) diamond-free
sandwich,

or FAIL otherwise.

This may force additional edges to be added.

Repeat "forcing of additions"

-- If it stops with no failure, then the resulting filledin graph will be a diamond-free sandwich graph.

What is your Favorite Property Π?

EXERCISES:

• Trees:

The Tree Sandwich Problem is Linear

• Caterpillars:

The Caterpillar Sandwich Problem is NP-Complete

• Planar Graphs:

The Planar Graph Sandwich Problem is just Recognition that G^1 is Planar

The Chain Graph Sandwich Problem

Simone Dantas, Celina M. H. de Figueiredo, Martin Golumbic, Sulamita Klein and Frederic Maffray

Annals of Operations Research, 2011.

Definition: A Chain Graph is a $2K_2$ - free bipartite graph.

2K₂ The forbidden subgraph characterizing chain graphs.

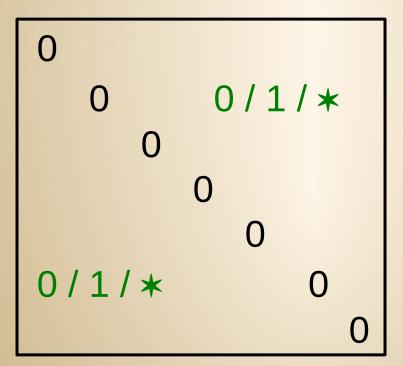
The chain graph sandwich problem is NP-complete.

This result stands in contrast to

the case where E¹ is a connected graph, (linear-time)
 the threshold graph sandwich problem, (linear-time)
 the chain probe graph problem (polynomial-time)

The Matrix View of Sandwiches

Adjacency matrix: {0, 1, * } entries, where * means <u>optional</u> -- *don't know* or *don't care*.



Matrix Sandwich Problems

 The consecutive ones matrix sandwich problem and the

circular ones matrix sandwich problem are NPcomplete. Golumbic and Wassermann [1996]

 The Ferrers matrix sandwich problem can be solved in O(mn) time. Golumbic [1996]

Matrix Sandwich Problems, cont.

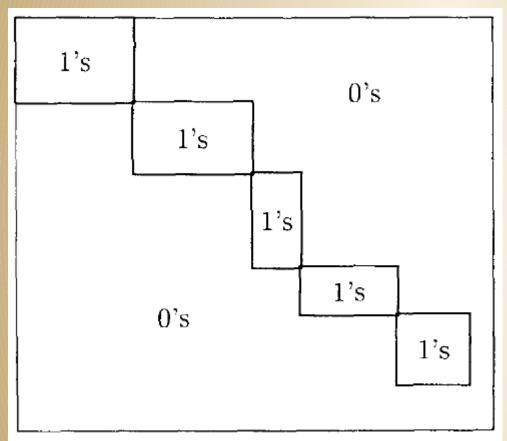


Fig. 1. A rectangular block pattern.

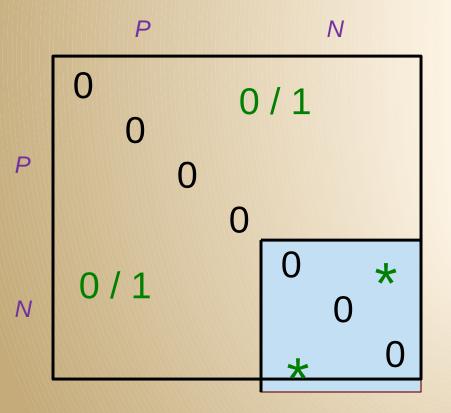
Theorem. The rectangular block decomposition sandwich problem can be solved in O(mn) time.

Theorem. Square block sandwich problem is NP-complete.

Partitioned Probe Graphs a special case of the Sandwich Problem

All optional edges are concentrated within one independent set *N*,

i.e., $E^0 = N \times N$.



Example: The Probe Game

- Take and interval graph.
- Choose a subset of vertices N.
- Erase the edges in $N \times N$.
- Give this Probe Problem to your students to solve.
 (Fill in the missing edges.)

Partitioned Probe Graphs a special case of the Sandwich Problem

Think of N × N as a hole in the sandwich graph that needs to be completed.

Many Known Results on Partitioned Probe Problems

Partitioned Interval Probe is polynomial

Julie Johnson and Jerry Spinrad [2001], McConnell and Spinrad

[2002], Ross McConnell and Yahav Nussbaum [2009]

- Partitioned Chordal Probe is polynomial Anne Berry, Martin Golumbic, Marina Lipshteyn [2006]
- Partitioned Unit Interval Probe is linear Yahav Nussbaum [2013]

 Two characterizations of Chain Probe so polynomial Van Bang Le [2011]

Summary

CHAIN GRAPH RECOGNITION	CHAIN GRAPH PARTITIONED PROBE
Linear	Polynomial
CHAIN GRAPH NON-PARTITIONED PROBE	CHAIN GRAPH SANDWICH
O(n ²)	NP-Complete

Other Sandwich Problems

- Hypergraph sandwich problems
- Boolean function completion problems
- **Peanut Butter** Sandwich Problems
- Poset

On Poset Sandwich Problems

Michel Habib David Kelly Emmanuelle Lebhar Christophe Paul

April 2003

On Poset Sandwich Problems

Michel Habib David Kelly Emmanuelle Lebhar Christophe Paul

April 2003

Discrete Mathematics 307 (2007) 2030-2041

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Can transitive orientation make sandwich problems easier? Michel Habib^a, David Kelly^b, Emmanuelle Lebhar^{c, 1}, Christophe Paul^{a, *, 1}

The comparability graph sandwich problem: Input: Undirected graphs $G^1 = (V, E^1)$, $G^2 = (V, E^2)$ s.t. $E^1 \subseteq E^2$ Question: Is there a transitively orientable graph G = (V, E)with $E^1 \subseteq E \subseteq E^2$?

This problem is NP-Complete.

The **transitive digraph** sandwich problem: Input: Directed graphs $D^1 = (V, F^1), D^2 = (V, F^2)$ s.t. $F^1 \subseteq F^2$

Question: Is there a transitive digraph D = (V,F)

with $F^1 \subseteq F \subseteq F^2$?

This problem is EASY !

Just check that the transitive closure F^* of F is contained in F^2

So the INTERESTING **poset sandwich problems** to be studied place a <u>special property</u> on the sandwich F: For example,

- interval order sandwich problem
- *dimension 2 poset* sandwich problem
- series-parallel poset sandwich problem
- *semiorder* sandwich problem
- *lattice* sandwich problem (not lettuce)

Moreover, there are <u>two versions</u> of the poset sandwich problem – depending on the INPUT: a Digraph or a Poset.

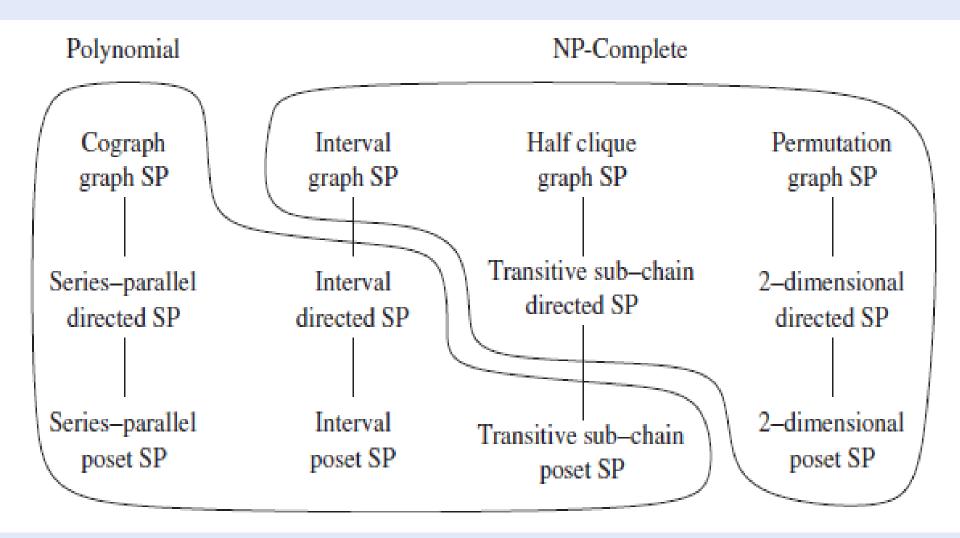
Habib, et al. [2007]:

Let Π be a poset property.

DIGRAPH SANDWICH PROBLEM FOR POSET PROPERTY Π Input: Two digraphs $D^1 = (V, F^1)$, $D^2 = (V, F^2)$ such that $F^1 \subseteq F^2$

Question: Does there exist a poset P = (V,F) satisfying Π
with $F^1 \subseteq F \subseteq F^2$?**POSET SANDWICH PROBLEM FOR POSET PROPERTY**Input:Two posets $P^1 = (V, F^1)$, $P^2 = (V, F^2)$ such that $F^1 \subseteq F^2$ Question: Does there exist a poset P = (V,F) satisfying Π
with $F^1 \subseteq F \subseteq F^2$?

Habib, et al. [2007]:



Enlarging the Graph Sandwich Hierarchy

H (on 4 vertices)	Complexity of H-free Sandwich	References
P ₄ (cographs)	Polynomial	GKS95
K ₄ (complete)	Polynomial	easy exercise
C ₄ (hole)	NP-complete	DFST11
K ₄ \e (diamond)	Polynomial	DFST11 (see example in section 9.1)
K _{1,3} (claw)	NP-complete	DFMT13
P ₃ + K ₁ (co- pan)	Polynomial	DFMT13

MORE Enlarging of the Graph Sandwich Hierarchy

Graph Class	Complexity of Sandwich	References
tolerance graphs	NP-complete	Exercise 1.4
trapezoid graphs	NP-complete	GT04
strongly chordal	NP-complete	FFKS07
chordal bipartite	NP-complete	Sri08
k-trees	NP-complete	GolWa98
k-trees for fixed k	Polynomial	GolWa98
unit interval graphs	NP-complete	GoKS94
unit interval with	Polynomial	KapSh96
bounded clique size		

Even MORE Enlarging of the Graph Sandwich Hierarchy

Graph Class	Complexity of Sandwich	References
caterpillars	NP-complete	ADS98,01
hereditary clique-	NP-complete	DPTF08
Helly graphs		
P4-sparse graphs	Polynomial	DKMM09
P4-reducible graphs	Polynomial	CKKLP05
homogeneous set	Polynomial	CEFK98
clique cutset	NP-complete	TF06
star cutset	Polynomial	TF06
skew cutset	NP-complete	DFMT13
line graphs	open	According to DFMT13

Even MORE Enlarging of the Graph Sandwich Hierarchy

Graph Class	Complexity of Sandwich	References
caterpillars	NP-complete	ADS98,01
hereditary clique-	NP-complete	DPTF08
Helly graphs		
P4-sparse graphs	Polynomial	DKMM09
P4-reducible graphs	Polynomial	CKKLP05
homogeneous set	Polynomial	CEFK98
clique cutset	NP-complete	TF06
star cutset	Polynomial	TF06
skew cutset	NP-complete	DFMT13
line graphs	open	According to DFMT13

Contents lists available at ScienceDirect

PPLIED ATHEMATICS

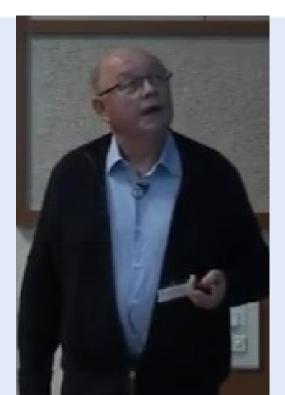
Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Discrete Applied Mathematics 159 (2011) 574-580

Complexity issues for the sandwich homogeneous set problem

Arnaud Durand^a, Michel Habib^{b,*}



A <u>module</u> H of vertices of a graph G = (V, E) is such that each vertex of $V \setminus H$ is adjacent to all vertices of H or to none of them.

A <u>non-trivial module</u> is such that $|H| \ge 2$ and $|V \setminus H| \ge 1$. A non-trivial module is also called a <u>homogeneous set</u>.

Sandwich Homogeneous Set (SHS) Problem Input: Undirected graphs $G^1 = (V, E^1)$, $G^2 = (V, E^2)$ s.t. $E^1 \subseteq E^2$ Question: Is there a sandwich graph G = (V, E)for the pair (G^1 , G^2) containing a homogeneous set H ?

Homogeneous Sandwich Problem

 O(n⁴) Cerioli, Everett, de Figuereido, Klein (1998)
 O(n³ log n) de Figueiredo, Fonseca, de Sa, Spinrad
 (2006) Durand and Habib (2011):

this implies that finding the maximum sandwich homogeneous set is NP-hard.

the counting version of this problem, which is proved to be #P-complete. MAX Sandwich Homogeneous Set (SHS) Problem

Input: Undirected graphs $G^1 = (V, E^1)$, $G^2 = (V, E^2)$ s.t. $E^1 \subseteq E^2$

and an integer k.

Question: Does there exist a sandwich homogeneous set

Η

such that |H| > = k? Theorem. Max sandwich homogeneous set problem is NPcomplete.

Using Hastad's result on Max-independent set, and a tight quasi-linear reduction from the k-independent set problem to the sandwich homogeneous set of size k,

they also obtain:

Theorem. Max sandwich homogeneous set problem cannot be approximated within a factor of $n^{1-\epsilon}$ for any $\epsilon > 0$

seconds on the history of FRENCH graph theory 60

FASCICULE XVIII

Les Réseaux (ou graphes)

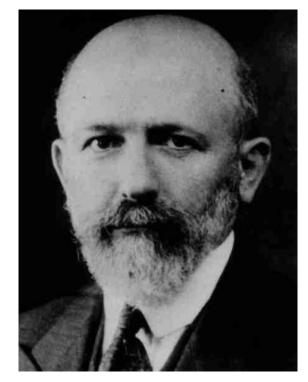
PAR M. A. SAINTE-LAGUË

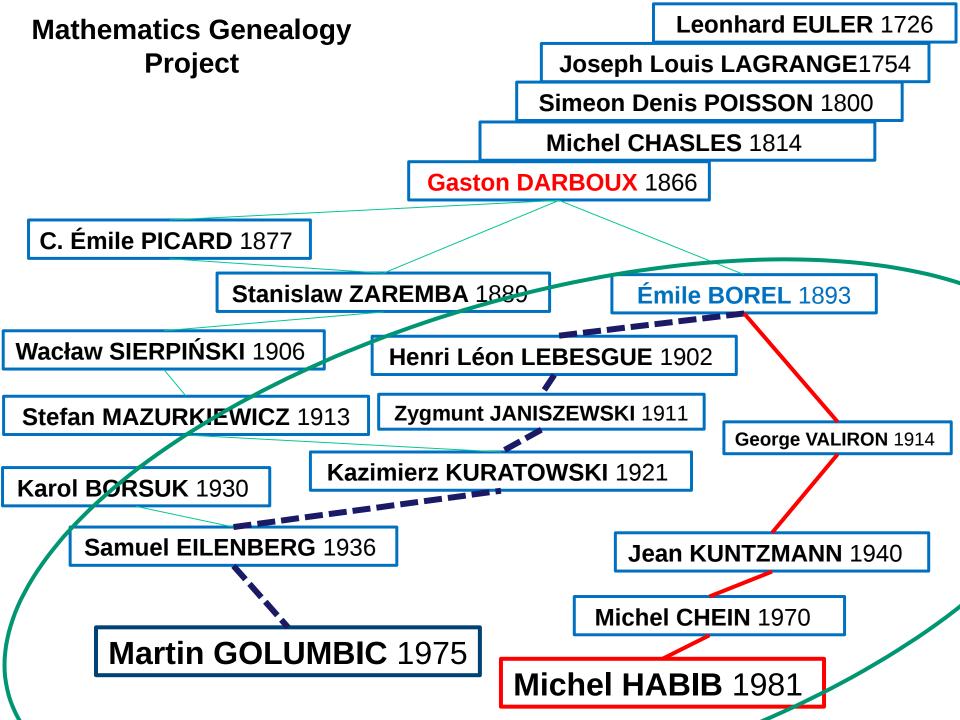
Professeur au Lycée Carnot.

PARIS GAUTHIER-VILLARS ET C^{ie}, ÉDITEURS LIBRAIRES DU BUREAU DES LONGITUDES, DE L'ÉCOLE POLYTECHNIQUE Quai des Grands-Augustins, 55.

1926

The Zeroth Book of Graph Theor





Thank you **MICHEL**

