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Outline

Grouping problems - Graph coloring

The general coloring problem (COL) (given graph G (V ,E )):

• Determine the chromatic number χ, i.e. minimum k
such that G can be colored with k colors with
adjacent vertices (linked by an edge) receiving
different colors

The k-coloring problem (k-COL) (given G and k):

• Determine if G can be colored with k colors

• If yes, find a legal coloring with the k given colors

COL can be approximated by a solving a series of k-COL
problems
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Outline

k-Coloring applications and algorithmic difficulty

Application examples

Assigning frequencies in mobile networks, scheduling/timetabling, register
allocation in compilers, supply chain management, air traffic flow
management and many others

Complexity

• NP-complete for k > 2 and one of the most studied combinatorial
problems

• Some random graphs with 150 vertices still resist the best exact
algorithms

• Cannot be approximated within a constant factor in polynomial time
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Case 1: Graph k-coloring space cartography

Graph k-coloring - Many heuristics

1 Sequential construction–very fast, not particularly good

2 Local search
• Tabu Search [Hertz & de Werra 1997, Blöchliger et al. 2008]
• Simulated Annealing [Johnson et al. 1991] and Quantum Annealing

(Titiloye & Crispin 2011)
• Iterated Local Search [Chiarandini & Stützle, 2002], VNS [Avanthay et

al. 2003], Variable Search Space [Hertz et al. 2008]

3 Evolutionary, distributed and hybrid methods
combination of local optimization and solution recombination [Morgenstern

1991; Fleurent & Ferland 1996; Dorne & Hao 1998; Galiner & Hao 1999;

Malaguti et al 2008; Lü & Hao 2010; Porumbel et al 2010, Moalic &

Gondran 2018]

4 ‘Reduce and coloring’ approach
graph reduction by extracting pairwised disjoint large independent sets

combined with a coloring algorithm [Wu & Hao 2012; Hao & Wu 2012]
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Case 1: Graph k-coloring space cartography

k-coloring with tabu search

Graph k-coloring (given G and k):

• Find a legal coloring with k given colors

• Minimize the number of edges whose endpoints
share the same color (conflicts)

• The search space contains all possible k-colorings
(legal and illegal colorings)

• The objective is to minimize the number of conflicts

• Start with a conflicting k-coloring and iteratively
improve it

• change the color of a conflicting vertex to decrease
conflicts

• use tabu list to avoid cycling of the search process
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Case 1: Graph k-coloring space cartography

Graph k-coloring search space cartography

Understanding the search space

• Relevant questions about combinatorial search spaces
• What is the spatial distribution of the local and global optima?
• Given a local search process, how does its trajectory look like?
• Which are the regions the process is more likely to explore?

• These issues can be tackled using a distance metric to capture the
proximity among the configurations of the search space.
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Case 1: Graph k-coloring space cartography

Distance between colorings

• A coloring = a partition of the vertex set V
• distance(P, S) = the minimal number of elements that need to

change their class so as to transform P into S
• similarity(P, S) = maximum number of shared elements, that do not

need to change their class so as to transform P into S

      a             b      c 

P: |1 2 3 4    | 5 6 7 | 8 9|

S: |1 2 3 4 8 | 5 9    | 6 7| 
=>

        Sa   Sb   Sc

 Pa   4     0     0
 Pb   0     1     2
 Pc   1     1     0
         

U
=> Similarity = 4+2+1=7

Distance = |V| - 7 = 2

=> 2 class transfers (i.e. 5 and 8) can transform P into S

• The maximum assignment on above matrix can be computed with the
Hungarian algorithm in O(|V |+ k3)

• And can be done more efficiently in O(|V |) for close partitions
(Porumbel-Hao-Kuntz 2011)
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Case 1: Graph k-coloring space cartography

Spatial distribution of the best configurations

Multidimensional Scaling (MDS)–a data mining tool visualizing the level
of similarity of high dimension elements:

• Projection: n-dimensional space −→ Euclidean 2D/3D space

• Euclidean distance between 3D points = approximation of the real
distance between the associated colorings.
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Case 1: Graph k-coloring space cartography

Intuitive representation of best local optima

• 350 best local minima represented by
Multidimensional scaling

• G = dsjc250.5, k = 27 (k∗ = 28))

• These points form clusters that can be
covered by spheres of small diameter.

3D MDS ( 350  points)
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Case 1: Graph k-coloring space cartography

Local search trajectory: MDS representation

We consider Tabu Search process exploring the search space

• we launch TS from a local optimum and we let it explore

• we consider the configurations of high-quality (not worse than the
starting point)

 600  configurations of  dsjc1000.1

0 X Axis 200 

0
Z
 A

x
is

2
0

0

0

Y Axis

200

 240  configurations of  le450.25c

0 X Axis 100 

0
Z
 A

x
is

1
0

0

0

Y Axis

100

⇒ the visited high-quality colorings are grouped in clusters
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Case 1: Graph k-coloring space cartography

Trajectory of long Tabu Search processes

A Tabu Search process explores the search space:

• Record first 40.000 high-quality configurations

• The distance histogram shows the number of
(pairs of) configurations distanced by each
distance value

• Small distances : configs. in the same cluster

• Large distances : configs. from different clusters

• The small distances are always less than 10%|V |
• The sphere of coloring C is the set of colorings

situated at less than R = 10%|V | from C
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Case 1: Graph k-coloring space cartography

Distance guided local search

We can use the above information for better search diversification and
intensification

1 TS-Div (Tabu Search DIVsified)

→ Avoid redundant exploration, never visit the same sphere twice

2 TS-Int (Tabu Search INTensified)

→ In-depth search of a closed perimeter around promising configurations
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Case 1: Graph k-coloring space cartography

A new TS-Div algorithm with learning techniques

Typical Local Search

• usually short-sighted with visibility limited to only one step

• no long-term memory

TS-Div

• remember the past, memorize the trajectory

• allowing more time = discover more new regions
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Case 1: Graph k-coloring space cartography

Basic principle of TS-Div

1 Memorizing the local search trajectory
• Complete recording (of each configuration) IMPOSSIBLE
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Case 1: Graph k-coloring space cartography

Objective of the new TS-Div algorithm

1 Coarse-grained recording (sphere per sphere) POSSIBLE

2 Avoid already-explored spheres (orient the search toward
as-yet-unvisited spheres)

=⇒ Coarse grained Tabu search
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Case 1: Graph k-coloring space cartography

TS-Div : Search process+Learning process

Search process: Tabu Search (TS)

• TS moves from coloring to coloring by changing a color

• At each iteration, TS selects the color change leading to the lowest
conflict number

• Each color change has to be not-Tabu, i.e. not performed in the near
past

• a move can be re-performed only if it has not been performed during
the last T` iterations (T` is called the tabu tenure)

• longer T` = more diversification

Jin-Kao Hao Learning-driven optimization 17 / 39



Case 1: Graph k-coloring space cartography

TS-Div : Search process+Learning process

• The learning process records all spheres explored by the search process
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Case 1: Graph k-coloring space cartography

TS-Div : Search process+Learning process

• If TS-Div visits a coloring
covered by a visited sphere:

=⇒
• increment Tabu list length
• the search process is

FORCED towards other
spheres

already 
visited

start
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Case 1: Graph k-coloring space cartography

TS-Div : Search process+Learning process

• If TS-Div visits a coloring
covered by a visited sphere:
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Case 1: Graph k-coloring space cartography

TS-Int

Intensification issues

• TS-Div aims to diversify, to go only once through each sphere

• One traversal per sphere can result in missing a “hidden” solution
inside that sphere

Objective of TS-Int

• “in-depth” examination of a close perimeter around a given starting
point

• find any solution from a starting configuration (a sphere center)
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Case 1: Graph k-coloring space cartography

TS-Int

1 Given a start configuration,
launch (iteratively) numerous
TS processes to explore its
sphere “from all angles”

• Each TS process is stopped
when it gets out of the sphere

• When enough processes
launched, the sphere is
considered clear (of better
configurations)

2 Take the next “sphere exit
point” as start configuration
and REPEAT step 1

Start 
Config. 1
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Case 1: Graph k-coloring space cartography
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Selective results of TS-Div/TS-Int

Graphe k∗ TS–Div + [1] [2] [3] [4] [5] [6] [7]
TS–Int

2010 2008 2008 2008 1993 1999 2008 2010

dsjc1000.1 20 20 20 20 20 21 20 20 20
dsjc1000.5 83 85 87 88 84 88 83 83 83
dsjc1000.9 224 223 224 225 224 226 224 225 223
flat300.28 28 28 28 28 31 31 31 31 29
flat1000.76 82 85 86 87 84 89 83 82 82
le450.25c 25 25 26 25 26 25 26 25 25
le450.25d 25 25 26 25 26 25 26 25 25

[1] Hertz et. al. Variable space search for graph coloring, [2] Blöchliger & Zufferey. A graph coloring heuristic using partial

solutions and a reactive tabu scheme, [3] Galinier et. al. An adaptive memory algorithm for the k-coloring problem, [4]

C. Morgenstern. Distributed coloration neighborhood search (DIMACS), [5] Galinier & Hao. Hybrid evolutionary algorithms for

graph coloring, [6] Malaguti et. al. A Metaheuristic Approach for the Vertex Coloring Problem, [7] Lü & Hao. A memetic

algorithm for graph coloring

In Column 2, k∗ is the best upper bound at the moment when our article was accepted by
Computers & O.R.



Case 1: Graph k-coloring space cartography

Other applications of the space cartography

1 Informed (Multi-Parent) Graph Coloring Crossover operator

→ Converge rapidly towards high-quality individuals/configurations

2 Method for a Strict Control of Population Diversity

→ Keep individuals distanced at all times, avoid premature convergence

⇒ Algorithm Evo-Div (Evolutionary Algorithm with Diversity Guarantee)
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Case 2: Probability learning based search for grouping problems

Grouping problems

Given a set V of n distinct items, a grouping problem is to partition the
items into k different groups gi (i = 1, . . . , k) (k can be fixed or vary),
while taking into account specific constraints and optimization objective.

• Problems with fixed k groups
• Graph k-coloring
• Graph k-way partitioning
• ...

• Problems with variable groups
• Graph coloring variants (sum coloring...)
• Bin-packing
• Clustering
• ...

Group naming may or may not be relevant–e.g. irrelevant for graph
coloring while relevant for sum coloring.
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Case 2: Probability learning based search for grouping problems

Learning based search for grouping problems

We develop a probability learning approach for grouping problems inspired
by reinforcement learning

• use a probability matrix to learn
• which element should go to which group
• which elements should stay together

• use a (basic) optimization procedure for solution improvement
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Case 2: Probability learning based search for grouping problems

Probability matrix

We use a probability matrix P of size n × k (n - number of items and k -
number of groups) where pij is the probability that the i-th item vi selects
the j-th group gj , initialized to 1/k, i.e., each item selects each group with
equal probability.

Figure: Probability matrix P
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Case 2: Probability learning based search for grouping problems

General scheme

Composed of four keys components: a (descent-based) local search
procedure, a group selection strategy, a probability learning mechanism,
and a probability smoothing technique.

Figure: A schematic diagram of PLS for grouping problems. From a starting
solution generated according to the probability matrix, the process iteratively runs
until its stopping condition is met
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Case 2: Probability learning based search for grouping problems

Group selection – assign items to groups

Given the Probability matrix P, an item can select its group according to
different strategies:

• Greedy selection: always select the group gj such that the associated
probability pij has the maximum value. This strategy is intuitively
reasonable, but may cause the algorithm to be trapped rapidly.

• Roulette wheel selection: the chance for an item vi to select group gj

is proportional to pij . Thus a group with a large (small) probability
has more (less) chance to be selected.

• Hybrid selection: with a noise probability ω, select the group
randomly; with probability 1− ω, apply greedy selection.

Experiments show that hybrid selection performs the best.
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Case 2: Probability learning based search for grouping problems

Optimization algorithm for solution improvement

Any method can be applied. In our case, we used both a steepest descent
local search and a simple tabu search algorithm
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Case 2: Probability learning based search for grouping problems

Probability updating and smoothing

Given a starting solution St and an improved solution Ŝt .

• If item vi keeps its original group (say gu), reward, with reward factor
α, the group gu and update its probability vector pi

pij (t + 1) =

{
α + (1− α)pij (t) j = u

(1− α)pij (t) otherwise.
(1)

• If item vi moves from its original group gu in St to a new group (say
gv , v 6= u), penalize, with penalization factor β, the discarded group
gu, compensate, with compensation factor γ, the new group gv and
update its probability vector pi

pij (t + 1) =


(1− γ)(1− β)pij (t) j = u

γ + (1− γ) β
k−1 + (1− γ)(1− β)pij (t) j = v

(1− γ) β
k−1 + (1− γ)(1− β)pij (t) otherwise.

(2)

Probability smoothing: reduce the the probabilities occasionally to forget
some old decisions.
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Case 2: Probability learning based search for grouping problems

Applied to graph k-coloring

Graph k-coloring (given G and k):

• Find a legal coloring with k given colors

• Minimize the number of edges whose endpoints
share the same color (conflicts)

• The search space contains all possible k-colorings
(legal and illegal colorings)

• The objective is to minimize the number of conflicts
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Case 2: Probability learning based search for grouping problems

Applied to k-coloring - Group matching of k-colorings

• The numberings of the groups in a coloring are irrelevant and
interchangeable.

• Identifying the group correspondences between two solutions (starting
solution and improved solution) by a maximum weight matching on a
complete bipartite graph with the Hungarian algorithm

Figure: (a) A complete bipartite graph with the weights between two groups
ωgi ,g ′j

= |gi ∩ g ′j | and (b) The corresponding maximum weight complete matching

with the maximum weight of 6).
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Case 2: Probability learning based search for grouping problems

Solution optimization with tabu search (TabuCOL)

Starting with a conflicting k-coloring, TabuCol (Hertz & De Werra 1987,
Dorne & Hao 1999, Galinier & Hao 1999) improves iteratively the
solutions

• change the color of a conflicting vertex such that the resulting
coloring minimizes the number of conflicts

• tabu list to forbid the vertex to receive the lost color during tl
iterations (to avoid cycling of the search process)
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Case 2: Probability learning based search for grouping problems

Computational results

Tested on difficult DIMACS Challenge benchmark graphs
Compared with TabuCOL

• Dominate TabuCOL: better results and less computing time

Compared with 10 state of the art coloring algorithms (among MANY
algorithms)

• Generally better than local search algorithms

• Competitive with several complex hybrid methods
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Case 2: Probability learning based search for grouping problems

Computational results

Comparison with TabuCOL on difficult DIMACS graphs.

PLSCOL TabuCOL

Instance χ/k∗ k #succ #gen #iter time(s) k #succ #gen #iter time(s)

DSJC250.5 ?/28 28 10/10 3 4.0 × 105 4 28 10/10 58 1.1 × 107 102

DSJC500.1 ?/12 12 07/10 69 7.5 × 106 43 12 10/10 8936 1.9 × 109 12808

DSJC500.5 ?/47 48 03/10 761 7.9 × 107 1786 49 06/10 1122 2.5 × 108 5543

DSJC500.9 ?/126 126 10/10 187 2.4 × 107 747 127 10/10 362 9.2 × 107 2704

DSJC1000.1 ?/20 20 01/10 369 2.9 × 108 3694 21 10/10 2 3.7 × 105 4

DSJC1000.5 ?/83 87 10/10 203 2.7 × 107 1419 89 02/10 492 1.4 × 108 7031

DSJC1000.9 ?/222 223 05/10 2886 3.1 × 108 12094 229 05/10 270 1.0 × 108 9237

DSJR500.1c ?/85 85 10/10 317 3.2 × 107 386 85 10/10 554 8.3 × 107 1825

DSJR500.5 ?/122 126 08/10 464 7.3 × 107 1860 127 01/10 2,7014.3 × 108 8592

le450 15c 15/15 15 07/10 2883 2.8 × 108 1718 15 10/10 155 2.1 × 107 238

le450 15d 15/15 15 03/10 2787 2.8 × 108 2499 15 10/10 766 1.1 × 108 1314

le450 25c 25/25 25 10/10 1968 2.0 × 108 1296 26 10/10 1 8.1 × 104 1

le450 25d 25/25 25 10/10 2110 2.2 × 108 1704 26 10/10 1 1.1 × 105 2

flat300 26 0 26/26 26 10/10 49 4.9 × 106 195 26 10/10 31 5.1 × 106 254

flat300 28 0 28/28 30 10/10 147 1.5 × 107 233 31 10/10 95 1.9 × 107 242

flat1000 76 0 76/81 86 01/10 908 1.1 × 108 5301 89 02/10 339 9.1 × 107 3709

R250.5 ?/65 66 10/10 865 1.1 × 108 705 66 01/10 1793 2.3 × 108 2038

R1000.1c ?/98 98 10/10 88 9.1 × 106 256 98 10/10 110 2.0 × 107 702

R1000.5 ?/234 254 04/10 189 3.7 × 107 7818 260 10/10 1 3.1 × 105 124

latin square 10 ?/97 99 08/10 666 6.7 × 107 2005 103 10/10 444 9.7 × 107 7769
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Case 2: Probability learning based search for grouping problems

Computational results

Comparison with 10 reference algorithms on difficult DIMACS graphs

local search algorithms population-based algorithms

Instance χ/k∗
PLSCOL IGrAl VSS Partial HEA AMA MMT Evo-Div MA QA HEAD

kbest 2008 2008 2008 1999 2008 2008 2010 2010 2011 2015

DSJC250.5 ?/28 28 29 * * * 28 28 * 28 28 28
DSJC500.1 ?/12 12 12 12 12 12 12 12 12 12 12 12
DSJC500.5 ?/47 48 50 48 48 48 48 48 48 48 48 47
DSJC500.9 ?/126 126 129 126 127 126 126 127 126 126 126 126
DSJC1000.1 ?/20 20 22 20 20 20 20 20 20 20 20 20
DSJC1000.5 ?/82 87 94 86 89 83 84 84 83 83 83 82
DSJC1000.9 ?/222 223 239 224 226 224 224 225 223 223 222 222
DSJR500.1c ?/85 85 85 85 85 * 86 85 85 85 85 85
DSJR500.5 ?/122 126 126 125 125 * 127 122 122 122 122 *
le450 15c 15/15 15 16 15 15 15 15 15 * 15 15 *
le450 15d 15/15 15 16 15 15 15 15 15 * 15 15 *
le450 25c 25/25 25 27 25 25 26 26 25 25 25 25 25
le450 25d 25/25 25 27 25 25 26 26 25 25 25 25 25
flat300 26 0 26/26 26 * * * * 26 26 * 26 * *
flat300 28 0 28/28 30 * 28 28 31 31 31 31 29 31 31
flat1000 76 0 76/81 86 * 85 87 83 84 83 82 82 82 81
R250.5 ?/65 66 * * 66 * * 65 65 65 65 65
R1000.1c ?/98 98 * * * * * 98 98 98 98 98
R1000.5 ?/234 254 * * 248 * * 234 238 245 238 245
latin square 10 ?/97 99 100 * * * 104 101 100 99 98 *
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Conclusions

Conclusions

• Most presented techniques can be applied to solve other optimization
problems

• Data mining and learning can boost existing optimization methods

• Data mining and learning can help create new optimization methods

• There is still much to be done and explored
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Thank you!
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