Simple learning techniques for graph coloring

Jin-Kao Hao

Université d'Angers, France Email: jin-kao.hao@univ-angers.fr Web: www.info.univ-angers.fr/pub/hao

Collaborators: Daniel Porumbel, Yangming Zhou, Béatrice Duval, Pascale Kuntz

October 2018, Paris

Outline

- Introduction
- **2** Case 1: Multidimensional scaling for search space cartography of graph coloring
- **3** Case 2: Probability learning based search for grouping problems (graph coloring)

Grouping problems - Graph coloring

The general coloring problem (COL) (given graph G(V, E)):

- Determine the chromatic number χ, i.e. minimum k such that G can be colored with k colors with adjacent vertices (linked by an edge) receiving different colors
- The k-coloring problem (k-COL) (given G and k):
 - Determine if G can be colored with k colors
 - If yes, find a legal coloring with the k given colors

COL can be approximated by a solving a series of k-COL problems

Jin-Kao Hao

V1 V2, V3, V5 V4

k-Coloring applications and algorithmic difficulty

Application examples

Assigning frequencies in mobile networks, scheduling/timetabling, register allocation in compilers, supply chain management, air traffic flow management and many others

Complexity

- NP-complete for k > 2 and one of the most studied combinatorial problems
- Some random graphs with 150 vertices still resist the best exact algorithms
- Cannot be approximated within a constant factor in polynomial time

Graph k-coloring - Many heuristics

- 1 Sequential construction-very fast, not particularly good
- 2 Local search
 - Tabu Search [Hertz & de Werra 1997, Blöchliger et al. 2008]
 - Simulated Annealing [Johnson et al. 1991] and Quantum Annealing (Titiloye & Crispin 2011)
 - Iterated Local Search [Chiarandini & Stützle, 2002], VNS [Avanthay et al. 2003], Variable Search Space [Hertz et al. 2008]

8 Evolutionary, distributed and hybrid methods

combination of local optimization and solution recombination [Morgenstern 1991; Fleurent & Ferland 1996; Dorne & Hao 1998; Galiner & Hao 1999; Malaguti et al 2008; Lü & Hao 2010; Porumbel et al 2010, Moalic & Gondran 2018]

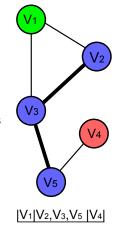
4 'Reduce and coloring' approach

graph reduction by extracting pairwised disjoint large independent sets combined with a coloring algorithm [Wu & Hao 2012; Hao & Wu 2012]

k-coloring with tabu search

Graph k-coloring (given G and k):

- Find a legal coloring with k given colors
- Minimize the number of edges whose endpoints share the same color (conflicts)
 - The search space contains all possible *k*-colorings (legal and illegal colorings)
 - The objective is to minimize the number of conflicts
- Start with a conflicting *k*-coloring and iteratively improve it
 - change the color of a *conflicting* vertex to decrease conflicts
 - use tabu list to avoid cycling of the search process



Graph k-coloring search space cartography

Understanding the search space

- Relevant questions about combinatorial search spaces
 - What is the spatial distribution of the local and global optima?
 - · Given a local search process, how does its trajectory look like?
 - Which are the regions the process is more likely to explore?
- These issues can be tackled using a **distance metric** to capture the proximity among the configurations of the search space.

Distance between colorings

- A coloring = a partition of the vertex set V
 - distance(*P*, *S*) = the minimal number of elements that need to change their class so as to transform *P* into *S*
 - similarity(P, S) = maximum number of shared elements, that do not need to change their class so as to transform P into S

=> 2 class transfers (i.e. 5 and 8) can transform P into S

- The maximum assignment on above matrix can be computed with the Hungarian algorithm in $O(|V| + k^3)$
- And can be done more efficiently in O(|V|) for close partitions (Porumbel-Hao-Kuntz 2011)

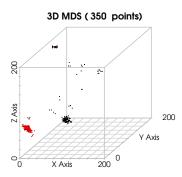
Spatial distribution of the best configurations

Multidimensional Scaling (MDS)-a **data mining tool** visualizing the level of similarity of high dimension elements:

- Projection: n-dimensional space → Euclidean 2D/3D space
- Euclidean distance between 3D points = **approximation** of the real distance between the associated colorings.

Intuitive representation of best local optima

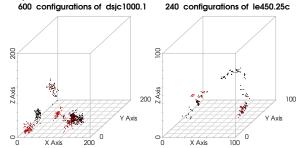
- 350 best local minima represented by Multidimensional scaling
 - $G = dsjc250.5, k = 27 (k^* = 28))$
- These points form clusters that can be covered by **spheres** of small diameter.



Local search trajectory: MDS representation

We consider Tabu Search process exploring the search space

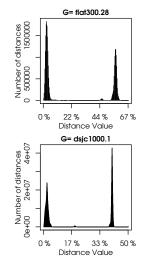
- we launch TS from a local optimum and we let it explore
- we consider the configurations of high-quality (not worse than the starting point)



 \Rightarrow the visited high-quality colorings are grouped in clusters

Trajectory of long Tabu Search processes

- A Tabu Search process explores the search space:
 - Record first 40.000 high-quality configurations
 - The **distance histogram** shows the number of (pairs of) configurations distanced by each distance value
 - Small distances : configs. in the same cluster
 - Large distances : configs. from different clusters
 - The small distances are always less than 10% |V|
 - The sphere of coloring C is the set of colorings situated at less than R = 10% |V| from C



Distance guided local search

We can use the above information for better search **diversification** and **intensification**

- 1 TS-Div (Tabu Search DIVsified)
- $\rightarrow\,$ Avoid redundant exploration, never visit the same sphere twice
- **2** TS-Int (Tabu Search INTensified)
- $\rightarrow\,$ In-depth search of a closed perimeter around promising configurations

A new TS-Div algorithm with learning techniques

Typical Local Search

- usually short-sighted with visibility limited to only one step
- no long-term memory

TS-Div

- remember the past, memorize the trajectory
- allowing more time = discover more new regions

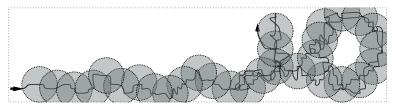
Basic principle of TS-Div

1 Memorizing the local search trajectory

• Complete recording (of each configuration) IMPOSSIBLE

Objective of the new TS-Div algorithm

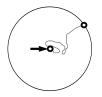
1 Coarse-grained recording (sphere per sphere) POSSIBLE

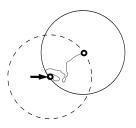


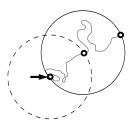
- Avoid already-explored spheres (orient the search toward as-yet-unvisited spheres)
- \implies Coarse grained Tabu search

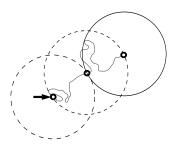
Search process: Tabu Search (TS)

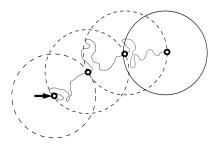
- TS moves from coloring to coloring by changing a color
- At each iteration, TS selects the color change leading to the lowest conflict number
- Each color change has to be not-Tabu, i.e. not performed in the **near past**
 - a move can be re-performed only if it has not been performed during the last T_{ℓ} iterations (T_{ℓ} is called the tabu tenure)
 - longer T_{ℓ} = more diversification

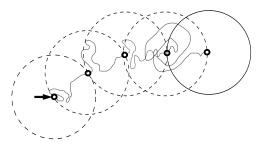




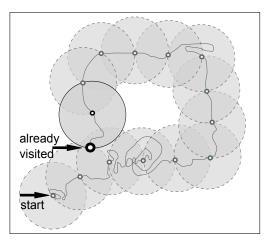




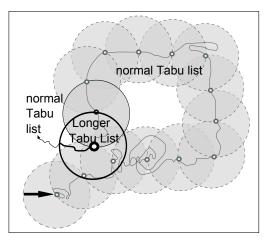




- If TS-Div visits a coloring covered by a visited sphere:
 - increment Tabu list length
 - the search process is FORCED towards other spheres



- If TS-Div visits a coloring covered by a visited sphere:
 - increment Tabu list length
 - the search process is FORCED towards other spheres



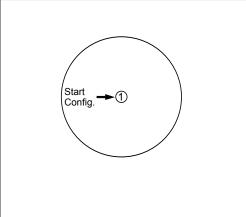
Intensification issues

- TS-Div aims to diversify, to go only once through each sphere
- One traversal per sphere can result in missing a "hidden" solution inside that sphere

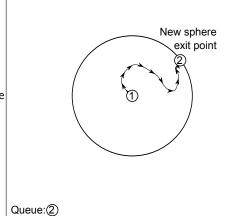
Objective of TS-Int

- "in-depth" examination of a close perimeter around a **given starting point**
- find any solution from a starting configuration (a sphere center)

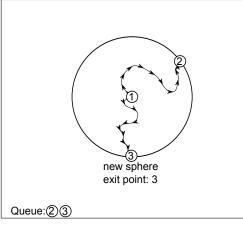
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



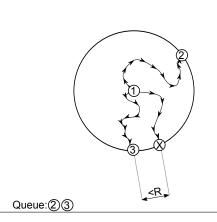
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



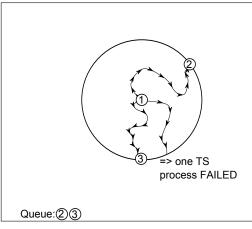
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



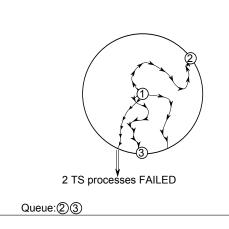
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



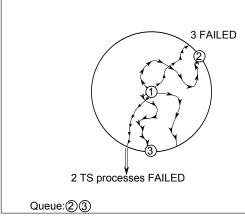
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



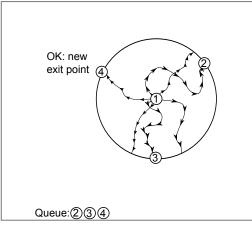
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



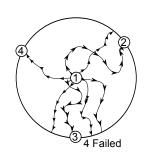
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1

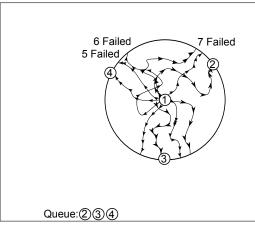


- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When enough processes launched, the sphere is considered clear (of better configurations)
- Take the next "sphere exit point" as start configuration and REPEAT step 1



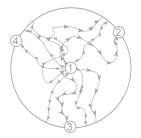
Queue:234

- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When **enough** processes launched, the sphere is considered **clear** (of better configurations)
- 2 Take the next "sphere exit point" as start configuration and REPEAT step 1



TS-Int

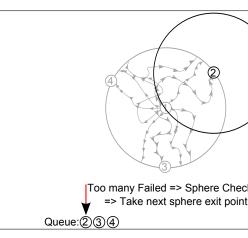
- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When **enough** processes launched, the sphere is considered **clear** (of better configurations)
- 2 Take the next "sphere exit point" as start configuration and REPEAT step 1



Too many Failed => Sphere Check => Take next sphere exit point Queue:234

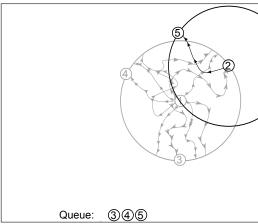
TS-Int

- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When **enough** processes launched, the sphere is considered **clear** (of better configurations)
- 2 Take the next "sphere exit point" as start configuration and REPEAT step 1



TS-Int

- Given a start configuration, launch (iteratively) numerous TS processes to explore its sphere "from all angles"
 - Each TS process is stopped when it gets out of the sphere
 - When **enough** processes launched, the sphere is considered **clear** (of better configurations)
- 2 Take the next "sphere exit point" as start configuration and REPEAT step 1



Selective results of TS-Div/TS-Int

Graphe	k*	TS–Div + TS–Int	[1]	[2]	[3]	[4]	[5]	[6]	[7]
		2010	2008	2008	2008	1993	1999	2008	2010
<i>dsjc</i> 1000.1	20	20	20	20	20	21	20	20	20
<i>dsjc</i> 1000.5	83	85	87	88	84	88	83	83	83
<i>dsjc</i> 1000.9	224	223	224	225	224	226	224	225	223
flat300.28	28	28	28	28	31	31	31	31	29
<i>flat</i> 1000.76	82	85	86	87	84	89	83	82	82
<i>le</i> 450.25 <i>c</i>	25	25	26	25	26	25	26	25	25
le450.25d	25	25	26	25	26	25	26	25	25

Hertz et. al. Variable space search for graph coloring, [2] Blöchliger & Zufferey. A graph coloring heuristic using partial solutions and a reactive tabu scheme, [3] Galinier et. al. An adaptive memory algorithm for the k-coloring problem, [4]
 Morgenstern. Distributed coloration neighborhood search (DIMACS), [5] Galinier & Hao. Hybrid evolutionary algorithms for graph coloring, [6] Malaguti et. al. A Metaheuristic Approach for the Vertex Coloring Problem, [7] Lü & Hao. A memetic algorithm for graph coloring

In Column 2, k^* is the best upper bound at the moment when our article was accepted by Computers & O.R.

Other applications of the space cartography

- 1 Informed (Multi-Parent) Graph Coloring Crossover operator
- $\rightarrow\,$ Converge rapidly towards high-quality individuals/configurations
- 2 Method for a **Strict** Control of Population Diversity
- $\rightarrow\,$ Keep individuals distanced at all times, avoid premature convergence
- \Rightarrow Algorithm <u>Evo-Div</u> (Evolutionary Algorithm with <u>Div</u>ersity Guarantee)

Grouping problems

Given a set V of n distinct items, a grouping problem is to partition the items into k different groups g_i (i = 1, ..., k) (k can be fixed or vary), while taking into account specific constraints and optimization objective.

- Problems with fixed k groups
 - Graph k-coloring
 - Graph k-way partitioning
 - ...
- Problems with variable groups
 - Graph coloring variants (sum coloring...)
 - Bin-packing
 - Clustering
 - ...

Group naming may or may not be relevant–e.g. irrelevant for graph coloring while relevant for sum coloring.

Learning based search for grouping problems

We develop a probability learning approach for grouping problems inspired by reinforcement learning

- use a probability matrix to learn
 - which element should go to which group
 - which elements should stay together
- use a (basic) optimization procedure for solution improvement

Probability matrix

We use a probability matrix P of size $n \times k$ (n - number of items and k - number of groups) where p_{ij} is the probability that the *i*-th item v_i selects the *j*-th group g_j , initialized to 1/k, i.e., each item selects each group with equal probability.

g_1	g_2		g_k
-------	-------	--	-------

<i>v</i> ₁	p_{11}	<i>p</i> ₁₂	 p_{k1}
<i>v</i> ₂	p_{21}	<i>p</i> ₂₂	 p_{k2}
<i>v</i> _n	p_{n1}	p_{n2}	 p _{nk}

Figure: Probability matrix P

General scheme

Composed of four keys components: a (descent-based) local search procedure, a group selection strategy, a probability learning mechanism, and a probability smoothing technique.

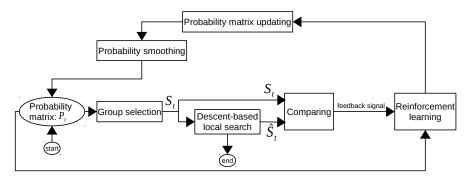


Figure: A schematic diagram of PLS for grouping problems. From a starting solution generated according to the probability matrix, the process iteratively runs until its stopping condition is met Jin-Kao Hao Learning-driven optimization

Group selection - assign items to groups

Given the Probability matrix P, an item can select its group according to different strategies:

- Greedy selection: always select the group g_j such that the associated probability p_{ij} has the maximum value. This strategy is intuitively reasonable, but may cause the algorithm to be trapped rapidly.
- Roulette wheel selection: the chance for an item v_i to select group g_j is proportional to p_{ij} . Thus a group with a large (small) probability has more (less) chance to be selected.
- Hybrid selection: with a noise probability ω , select the group randomly; with probability 1ω , apply greedy selection.

Experiments show that hybrid selection performs the best.

Optimization algorithm for solution improvement

Any method can be applied. In our case, we used both a steepest descent local search and a simple tabu search algorithm

Probability updating and smoothing

Given a starting solution S_t and an improved solution \hat{S}_t .

If item v_i keeps its original group (say g_u), reward, with reward factor α, the group g_u and update its probability vector p_i

$$p_{ij}(t+1) = egin{cases} lpha + (1-lpha) p_{ij}(t) & j = u \ (1-lpha) p_{ij}(t) & ext{otherwise.} \end{cases}$$

• If item v_i moves from its original group g_u in S_t to a new group (say $g_v, v \neq u$), penalize, with penalization factor β , the discarded group g_u , compensate, with compensation factor γ , the new group g_v and update its probability vector p_i

$$p_{ij}(t+1) = \begin{cases} (1-\gamma)(1-\beta)p_{ij}(t) & j = u\\ \gamma + (1-\gamma)\frac{\beta}{k-1} + (1-\gamma)(1-\beta)p_{ij}(t) & j = v\\ (1-\gamma)\frac{\beta}{k-1} + (1-\gamma)(1-\beta)p_{ij}(t) & \text{otherwise.} \end{cases}$$
(2)

Probability smoothing: reduce the probabilities occasionally to forget some old decisions.

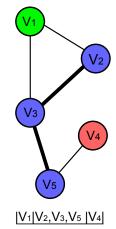
Jin-Kao Hao

Learning-driven optimization

Applied to graph k-coloring

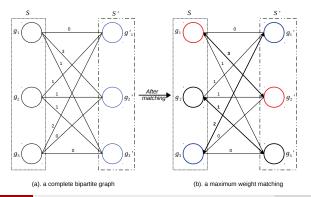
Graph k-coloring (given G and k):

- Find a legal coloring with k given colors
- Minimize the number of **edges whose endpoints share the same color** (conflicts)
 - The search space contains all possible *k*-colorings (legal and illegal colorings)
 - The objective is to minimize the number of conflicts



Applied to k-coloring - Group matching of k-colorings

- The numberings of the groups in a coloring are irrelevant and interchangeable.
- Identifying the group correspondences between two solutions (starting solution and improved solution) by a maximum weight matching on a complete bipartite graph with the Hungarian algorithm



Solution optimization with tabu search (TabuCOL)

Starting with a conflicting k-coloring, TabuCol (Hertz & De Werra 1987, Dorne & Hao 1999, Galinier & Hao 1999) improves iteratively the solutions

- change the color of a *conflicting* vertex such that the resulting coloring minimizes the number of conflicts
- tabu list to forbid the vertex to receive the lost color during *tl* iterations (to avoid cycling of the search process)

Computational results

Tested on difficult DIMACS Challenge benchmark graphs Compared with TabuCOL

• Dominate TabuCOL: better results and less computing time

Compared with 10 state of the art coloring algorithms (among MANY algorithms)

- Generally better than local search algorithms
- Competitive with several complex hybrid methods

Computational results

Comparison with TabuCOL on difficult DIMACS graphs.

		PLSCOL						TabuCOL					
Instance	χ/k^*	k	#succ	#gen	#iter	time(s)		k	#succ	#gen #iter time(s)			
DSJC250.5	?/28	28	10/10	3	4.0×10^{5}	4		28	10/10	58 1.1×10^7 102			
DSJC500.1	?/12	12	07/10	69	7.5×10^{6}	43		12	10/10	$89361.9 imes 10^9$ 12808			
DSJC500.5	?/47	48	03/10	761	$7.9 imes 10^7$	1786		49	06/10	$11222.5 imes 10^8$ 5543			
DSJC500.9	?/126	126	10/10	187	$2.4 imes 10^7$	747		127	10/10	$362 \ 9.2 imes 10^7 \ 2704$			
DSJC1000.1	?/20	20	01/10	369	$2.9 imes 10^8$	3694		21	10/10	$2 \hspace{0.1in} 3.7 \times 10^{5} \hspace{0.1in} 4$			
DSJC1000.5	?/83	87	10/10	203	$2.7 imes 10^7$	1419		89	02/10	492 1.4 $ imes$ 10 ⁸ 7031			
DSJC1000.9	?/222	223	05/10	2886	$3.1 imes 10^8$	12094		229	05/10	$270 \ 1.0 imes 10^8 \ 9237$			
DSJR500.1c	?/85	85	10/10	317	$3.2 imes 10^7$	386		85	10/10	554 8.3 $ imes 10^7$ 1825			
DSJR500.5	?/122	126	08/10	464	$7.3 imes 10^7$	1860		127	01/10	$2,7014.3 imes 10^8$ 8592			
le450_15c	15/15	15	07/10	2883	$2.8 imes 10^8$	1718		15	10/10	$155\ 2.1 imes 10^7$ 238			
le450_15d	15/15	15	03/10	2787	$2.8 imes 10^8$	2499		15	10/10	766 $\overline{1.1 \times 10^8}$ 1314			
le450_25c	25/25	25	10/10	1968	$2.0 imes 10^8$	1296		26	10/10	$1 \ \overline{8.1 \times 10^4} \ 1$			
le450_25d	25/25	25	10/10	2110	$2.2 imes 10^8$	1704		26	10/10	$1 1.1 \times 10^5$ 2			
flat300_26_0	26/26	26	10/10	49	$4.9 imes 10^{6}$	195		26	10/10	$31 \ 5.1 imes 10^6 \ 254$			
flat300_28_0	28/28	30	10/10	147	$1.5 imes 10^7$	233		31	10/10	95 1.9×10^7 242			
flat1000_76_0	76/81	86	01/10	908	$1.1 imes 10^8$	5301		89	02/10	$339 \ 9.1 imes 10^7 \ 3709$			
R250.5	?/65	66	10/10	865	$1.1 imes 10^8$	705		66	01/10	$17932.3\times10^8\ 2038$			
R1000.1c	?/98	98	10/10	88	9.1×10^{6}	256		98	10/10	$110\ 2.0 imes 10^7$ 702			
R1000.5	?/234	254	04/10	189	$3.7 imes 10^7$	7818		260	10/10	$1 3.1\times 10^5 124$			
latin_square_1	LO ?/97	99	08/10	666	$6.7 imes 10^7$	2005		103	10/10	$444 9.7 \times 10^7 7769$			

Computational results

Comparison with 10 reference algorithms on difficult DIMACS graphs

	local search algorithms					population-based algorithms							
	1	PLSCOL	IGrAI	VSS	Partial		HEA	AMA	MMT	Evo-Div	MA	QA	HEAD
Instance	χ/k^*	k _{best}	2008	2008	2008		1999	2008	2008	2010	2010	2011	2015
DSJC250.5	?/28	28	29	*	*		*	28	28	*	28	28	28
DSJC500.1	?/12	12	12	12	12		12	12	12	12	12	12	12
DSJC500.5	?/47	48	50	48	48		48	48	48	48	48	48	47
DSJC500.9	?/126	126	129	126	127		126	126	127	126	126	126	126
DSJC1000.1	?/20	20	22	20	20		20	20	20	20	20	20	20
DSJC1000.5	?/82	87	94	86	89		83	84	84	83	83	83	82
DSJC1000.9	?/222	223	239	224	226		224	224	225	223	223	222	222
DSJR500.1c	?/85	85	85	85	85		*	86	85	85	85	85	85
DSJR500.5	?/122	126	126	125	125		*	127	122	122	122	122	*
le450_15c	15/15	15	16	15	15		15	15	15	*	15	15	*
le450_15d	15/15	15	16	15	15		15	15	15	*	15	15	*
le450_25c	25/25	25	27	25	25		26	26	25	25	25	25	25
le450_25d	25/25	25	27	25	25		26	26	25	25	25	25	25
flat300_26_0	26/26	26	*	*	*		*	26	26	*	26	*	*
flat300_28_0	28/28	30	*	28	28		31	31	31	31	29	31	31
flat1000_76_0	76/81	86	*	85	87		83	84	83	82	82	82	81
R250.5	?/65	66	*	*	66		*	*	65	65	65	65	65
R1000.1c	?/98	98	*	*	*		*	*	98	98	98	98	98
R1000.5	?/234	254	*	*	248		*	*	234	238	245	238	245
latin_square_10	?/97	99	100	*	*		*	104	101	100	99	98	*

Conclusions

- Most presented techniques can be applied to solve other optimization problems
- Data mining and learning can boost existing optimization methods
- Data mining and learning can help create new optimization methods
- There is still much to be done and explored

Related papers

- D.C. Porumbel, J.K. Hao, P. Kuntz. A search space cartography for guiding graph coloring heuristics. Computers & Operations Research 37(4):769–778, 2010.
- D.C. Porumbel, J.K. Hao, P. Kuntz. An efficient algorithm for computing the distance between close partitions. Discrete Applied Mathematics 159:53–59, 2011.
- Y. Zhou, J.K. Hao, B. Duval. Reinforcement learning based local search for grouping problems: A case study on graph coloring. Expert Sys. with App. 64:412–422, 2016.
- Y. Zhou, B. Duval, J.K. Hao. Improving probability learning based local search for graph coloring. Applied Soft Computing, 65:542–553, 2018.
- Y. Zhou, J.K. Hao, B. Duval. When data mining meets optimization: A case study on the quadratic assignment problem. arXiv:1708.05214, Aug. 2017.
- Y. Zhou, J.K. Hao, B. Duval. Opposition-based memetic search for the maximum diversity problem. IEEE Transactions on Evolutionary Computation, 25(1):731–745, 2017.
- F. Glover and J.K. Hao. Diversification-based learning in computing and optimization. Journal of Heuristics, 2018.

Thank you!