Vertex Orderings and Decomposition into Cographs

Patrice Ossona de Mendez

Charles University
Praha, Czech Republic

LIA STRUCO

CAMS, CNRS/EHESS
Paris, France

— 40 Years of Graphs and Algorithms —
Orderings
Local Search Ordering

BFS

LexBFS

DFS

LexBFS

Sorry Michel...not going to look at these!
Local Search Ordering

BFS

LexBFS

DFS

LexBFS

😊 Sorry Michel...not going to look at these!
Non local ordering with local properties
Generalized Coloring Numbers

\[\text{adm}_r(G) \leq \text{col}_r(G) \leq \text{wcol}_r(G) \leq 1 + r(\text{adm}_r(G) - 1)r^2 \]
Bounds

<table>
<thead>
<tr>
<th>Class of graphs</th>
<th>col_r</th>
<th>wcol_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded expansion</td>
<td>$\leq f(r)$ (Zhu ’09)</td>
<td></td>
</tr>
<tr>
<td>No K_t-minor</td>
<td>$\binom{t-1}{2}(2r + 1)$</td>
<td>$\binom{r+t-2}{t-2}(t - 3)(2r + 1)$</td>
</tr>
<tr>
<td>Planar</td>
<td>$5r + 1$</td>
<td>$(r+2)_2(2r + 1)$</td>
</tr>
</tbody>
</table>

(van den Leuven, POM, Quiroz, Rabinovich, Siebertz ’17)
Powers of Sparse Graphs
Subcoloring

Theorem (Nešetřil, POM, Zhu ’18+)

For every graph G and every integer $k \geq 2$ we have

$$\chi_{sub}(G^k) \leq \begin{cases}
\text{wcol}_{2k-1}(G) & \text{if } k \text{ is odd}, \\
\text{wcol}_{2k}(G) & \text{if } k \text{ is even}.
\end{cases}$$

Corollary

Let $k \geq 2$ and $\mathcal{D} = \{H \subseteq_i G^k \mid G \in \mathcal{C}\}$. Tfae:

1. \mathcal{C} has bounded expansion;
2. \mathcal{D} has bounded subchromatic number;
3. \mathcal{D} is linearly χ-bounded;
4. \mathcal{D} is χ-bounded.
Proof

Let $k' = \lfloor k/2 \rfloor$ and
\[
\begin{cases}
(c, <) \text{ a rank k}+2k' \text{ weak colouring}; \\
v \mapsto \hat{v} := \min \text{ Ball}_{k'}(v); \\
\gamma(v) := c(\hat{v}).
\end{cases}
\]

\[
\begin{cases}
uv \in E(G^k) \\
\gamma(u) = \gamma(v)
\end{cases} \Rightarrow \hat{u} = \hat{v} \quad \leadsto \quad \text{No } \gamma\text{-monochromatic induced } P_3.
\]
Weak Coloring Numbers

Theorem (Nešetřil, POM, Zhu ’18+)

For every integers $k \geq 2$ and $r \geq 1$, every graph G, and every induced subgraph H of G^k we have

$$wcol_r(H) \leq wcol_{kr+2\lfloor \frac{k}{2} \rfloor}(G) \omega(H).$$

Corollary

$$\omega(G^k) \leq \chi(G^k) \leq \text{col}(G^k) \leq wcol_{2k}(G) \omega(G^k).$$

Problem

PTAS for $\omega(G^k)$?
Structural Sparsity
Structurally sparse graphs

A class is *structurally sparse* if it can be (simply) interpreted in a sparse class.

\[l(G) \models x \sim y \iff G \models \exists z_1, z_2 \left((x \sim z_1) \wedge (z_1 \sim z_2) \wedge (z_2 \sim y) \right) \]
Motivation: Model Checking

Theorem (Gajarský, Hliněný, Lokshtanov, Ramanujan ’16)
Let \mathcal{D} be a graph class interpretable in a bounded degree class. Then \mathcal{D} has an FO model checking algorithm in FPT.

Conjecture (Gajarský et al. 2016)
Let \mathcal{C} be a nowhere dense class and \mathcal{D} a graph class interpretable in \mathcal{C}. Then \mathcal{D} has an FO model checking algorithm in FPT.
Structural Sparsity

Orderings

- Powers
- Structural Sparsity
- Sparsification
- Next Step?

Monotone

- Simple First-Order Interpretation
- Bounded Expansion
 - Tree-depth
 - Tree-depth decompositions
 - \(\chi \)
 - Shallow topological minor

Hereditary

- Structurally Bounded Expansion
 - SC-depth
 - SC-depth decompositions
 - \(\chi/\omega \)
 - Shallow vertex minor

- NIP
- Stability
- VC-density

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk 2018)

A class of graphs has **SC-depth decompositions** if and only if it has a **structurally bounded expansion**.
Sparsification
Sparsification: Cographs strike back!
Vertex bloc: bounded depth cographs
Edge bloc: bounded depth bi-cographs
(c, d)-fold coloring
(c, d)-fold coloring
Sparsification: Cut & Paste
Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk 2018)

For a class of graphs \mathcal{C} with (c, d)-fold coloring the following are equivalent:

- \mathcal{C} has SC-depth decompositions
- $\text{Sparsify}(\mathcal{C})$ has tree-depth decompositions;
- $\text{Sparsify}(\mathcal{C})$ has bounded expansion.
- \mathcal{C} has structurally bounded expansion;

If (c, d)-fold colorings can be computed in time $F(n)$ for $G \in \mathcal{C}$ then checking a first-order sentence ϕ on \mathcal{C} can be done in time

$$F(n) + C(\phi, \mathcal{C})n.$$
Next Step?
Problem

Let C be a **structurally bounded expansion** class.

Is it possible to compute an (c, f)-fold coloring for graphs in C in **polynomial time**?

▶ Would have quite a few algorithmic consequences!
Thank you for your attention.