Orderings 00000 Powers 0000 Structural Sparsity 00000 Sparsification 0000000 Next Step? 000

Vertex Orderings and Decomposition into Cographs

Patrice Ossona de Mendez

Charles University Praha, Czech Republic

LIA STRUCO

CAMS, CNRS/EHESS Paris, France

- 40 Years of Graphs and Algorithms -

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	000000	000

Local Search Ordering

DFS

LexBFS

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
0000	0000	00000	000000	000

Local Search Ordering

Sorry Michel...not going to look at these!

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへの

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	0000000	000

Non local ordering with local properties

æ

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	000000	000

Generalized Coloring Numbers

$$\operatorname{adm}_r(G) \le \operatorname{col}_r(G) \le \operatorname{wcol}_r(G) \le 1 + r(\operatorname{adm}_r(G) - 1)^{r^2}$$

u

э

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
0000●	0000	00000	0000000	000
		Bounds		

Class of graphs	col_r	wcol_r
Bounded expansion	$\leq f(r)$ (Zhu '09)	
No K_t -minor	$\binom{t-1}{2}(2r+1)$ $\binom{r+t-2}{t-2}(t-3)(2r+1)$	
Planar	5r + 1	$\binom{r+2}{2}(2r+1)$

(van den Leuven, POM, Quiroz, Rabinovich, Siebertz '17)

イロト イロト イヨト イヨト 三日

Orderings 00000 Powers •000 Structural Sparsity 00000 Sparsification 0000000

イロト イヨト イヨト イヨト

Next Step? 000

Powers of Sparse Graphs

ъ

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	0000000	000
		G 1 1 ·		

Subcoloring

Theorem (Nešetřil, POM, Zhu '18+)

For every graph G and every integer $k \ge 2$ we have

$$\chi_{\rm sub}(G^k) \le \begin{cases} \operatorname{wcol}_{2k-1}(G) & \text{if } k \text{ is odd,} \\ \operatorname{wcol}_{2k}(G) & \text{if } k \text{ is even.} \end{cases}$$

Corollary

Let $k \geq 2$ and $\mathcal{D} = \{ H \subseteq_i G^k \mid G \in \mathcal{C} \}$. Tfae:

- 1. C has bounded expansion;
- 2. \mathcal{D} has bounded subchromatic number;
- 3. \mathcal{D} is linearly χ -bounded;
- 4. \mathcal{D} is χ -bounded.

・ロト ・ 何ト ・ ヨト ・ ヨト … ヨ

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	00●0	00000	0000000	000
		Proof		

Let
$$k' = \lfloor k/2 \rfloor$$
 and
$$\begin{cases} (c, <) \text{ a rank } k+2k' \text{ weak colouring;} \\ v \mapsto \hat{v} := \min \operatorname{Ball}_{k'}(v); \\ \gamma(v) := c(\hat{v}). \end{cases}$$

$$\begin{cases} uv \in E(G^k) \\ \gamma(u) = \gamma(v) \end{cases} \Rightarrow \hat{u} = \hat{v} \quad \rightsquigarrow \quad \text{No } \gamma \text{-monochromatic induced } P_3. \end{cases}$$

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	0000000	000

Weak Coloring Numbers

Theorem (Nešetřil, POM, Zhu '18+)

For every integers $k \geq 2$ and $r \geq 1$, every graph G, and every induced subgraph H of G^k we have

$$\operatorname{wcol}_{r}(H) \leq \operatorname{wcol}_{kr+2\lfloor \frac{k}{2} \rfloor}(G) \ \omega(H).$$

Corollary

$$\omega(G^k) \le \chi(G^k) \le \operatorname{col}(G^k) \le \operatorname{wcol}_{2k}(G)\,\omega(G^k).$$

Problem

PTAS for $\omega(G^k)$?

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

Orderings 00000

Power: 0000 Structural Sparsity $\bullet \circ \circ \circ \circ$

Sparsification 0000000 Next Step? 000

Structural Sparsity

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ○○○

Structurally sparse graphs

A class is *structurally sparse* if it can be (simply) interpreted in a sparse class.

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	0000	000000	000

Motivation: Model Checking

Theorem (Gajarskỳ, Hliněný, Lokshtanov, Ramanujan '16)

Let \mathscr{D} be a graph class interpretable in a bounded degree class. Then \mathscr{D} has an FO model checking algorithm in FPT.

Conjecture (Gajarský et al. 2016)

Let \mathscr{C} be a nowhere dense class and \mathscr{D} a graph class interpretable in \mathscr{C} . Then \mathscr{D} has an FO model checking algorithm in FPT.

・ロト ・ 雪 ト ・ ヨ ト

Orderings	Powers	Structural Sparsity 0000	Sparsification	Next Step?
00000	0000		0000000	000
			• .	

Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk 2018)

A class of graphs has SC-depth decompositions if and only if it has a structurally bounded expansion.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Orderings 00000 Power 0000 Structural Sparsity 00000 Sparsification

イロト イヨト イヨト イヨト

Next Step? 000

Sparsification

æ

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	000000	000

Sparsification: Cographs strike back!

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	000000	000

Vertex bloc: bounded depth cographs

Orderings	Powers	Structural Sparsity	Sparsification 0000000	Next Step?
00000	0000	00000		000

Edge bloc: bounded depth bi-cographs

イロト 不得下 イヨト イヨト

ъ

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	0000000	000

(c, d)-fold coloring

Orderings	Powers	Structural Sparsity	Sparsification 0000000	Next Step?
00000	0000	00000		000

(c, d)-fold coloring

Orderings	Powers	Structural Sparsity	Sparsification 000000	Next Step?
00000	0000	00000		000

Sparsification: Cut & Paste

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	000000	000

Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk 2018)

For a class of graphs ${\mathscr C}$ with $(c,d)\text{-}{\rm fold}$ coloring the following are equivalent:

- $\bullet \ {\mathscr C}$ has SC-depth decompositions
- Sparsify (\mathscr{C}) has tree-depth decompositions;
- Sparsify (\mathscr{C}) has bounded expansion.
- \mathscr{C} has structurally bounded expansion;

If (c, d)-fold colorings can be computed in time F(n) for $G \in \mathscr{C}$ then checking a first-order sentence ϕ on \mathscr{C} can be done in time

$$F(n) + C(\phi, \mathscr{C})n.$$

・ コ ト ス 厚 ト ス ヨ ト ス ヨ ト

0	r	d	е	r	i	n	s
0	0	0	0	С)		

Power 0000 Structural Sparsity 00000 Sparsification 0000000 Next Step? •00

Next Step?

Orderings	Powers	Structural Sparsity	Sparsification	Next Step?
00000	0000	00000	0000000	0●0

Next Step

Problem

Let \mathcal{C} be a structurally bounded expansion class.

Is it possible to compute an (c, f)-fold coloring for graphs in C in polynomial time?

 \triangleright Would have quite a few algorithmic consequences!

Orderings 00000 Power: 0000 Structural Sparsity 00000 Sparsification 0000000

・ロト ・個ト ・モト ・モト

Next Step?

