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Local Search Ordering

BFS LexBFS

DFS LexBFS

a b cd a b cd

a b cd a b cd

Sorry Michel. . . not going to look at these!
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Non local ordering with local properties
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Generalized Coloring Numbers

admr(G) ≤ colr(G) ≤ wcolr(G) ≤ 1 + r(admr(G)− 1)r
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Bounds

Class of graphs colr wcolr

Bounded expansion ≤ f(r) (Zhu ’09)

No Kt-minor
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(van den Leuven, POM, Quiroz, Rabinovich, Siebertz ’17)
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Powers of Sparse Graphs
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Subcoloring

Theorem (Nešetřil, POM, Zhu ’18+)

For every graph G and every integer k ≥ 2 we have

χsub(G
k) ≤

{
wcol2k−1(G) if k is odd,

wcol2k(G) if k is even.

Corollary

Let k ≥ 2 and D = {H ⊆i G
k | G ∈ C}. Tfae:

1. C has bounded expansion;
2. D has bounded subchromatic number;
3. D is linearly χ-bounded;
4. D is χ-bounded.
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Proof

Let k′ = bk/2c and


(c,<) a rank k+2k’ weak colouring;

v 7→ v̂ := minBallk′(v);

γ(v) := c(v̂).

vuûv̂

{
uv ∈ E(Gk)

γ(u) = γ(v)
⇒ û = v̂  No γ-monochromatic induced P3.
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Weak Coloring Numbers

Theorem (Nešetřil, POM, Zhu ’18+)

For every integers k ≥ 2 and r ≥ 1, every graph G, and every
induced subgraph H of Gk we have

wcolr(H) ≤ wcolkr+2b k
2
c(G) ω(H).

Corollary

ω(Gk) ≤ χ(Gk) ≤ col(Gk) ≤ wcol2k(G)ω(G
k).

Problem
PTAS for ω(Gk)?
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Structurally sparse graphs

A class is structurally sparse if it can be (simply)
interpreted in a sparse class.

I(G) |= x ∼ y ⇐⇒ G |= ∃z1, z2
(
(x ∼ z1)∧(z1 ∼ z2)∧(z2 ∼ y)

)
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Motivation: Model Checking

Theorem (Gajarskỳ, Hliněný, Lokshtanov, Ramanujan ’16)

Let D be a graph class interpretable in a bounded degree class.
Then D has an FO model checking algorithm in FPT.

Conjecture (Gajarskỳ et al. 2016)

Let C be a nowhere dense class and D a graph class interpretable
in C . Then D has an FO model checking algorithm in FPT.
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Structural Sparsity

Monotone Hereditary

Simple First-Oder Interpretation

))
Bounded Expansion Structurally Bounded Expansion

Tree-depth SC-depth
Tree-depth decompositions SC-depth decompositions

χ χ/ω
Shallow topological minor Shallow vertex minor

NIP
Stability

VC-density
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Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM,
Pilipczuk, Siebertz, Toruńczyk 2018)

A class of graphs has SC-depth decompositions if and only if it
has a structurally bounded expansion.
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Sparsification



Orderings Powers Structural Sparsity Sparsification Next Step?

Sparsification: Cographs strike back!
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Vertex bloc: bounded depth cographs
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Edge bloc: bounded depth bi-cographs
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(c, d)-fold coloring
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(c, d)-fold coloring
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Sparsification: Cut & Paste
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Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM,
Pilipczuk, Siebertz, Toruńczyk 2018)

For a class of graphs C with (c, d)-fold coloring the following are
equivalent:
• C has SC-depth decompositions
• Sparsify(C ) has tree-depth decompositions;
• Sparsify(C ) has bounded expansion.
• C has structurally bounded expansion;

If (c, d)-fold colorings can be computed in time F (n) for G ∈ C
then checking a first-order sentence φ on C can be done in time

F (n) + C(φ,C )n.
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Next Step?
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Next Step

Problem

Let C be a structurally bounded expansion class.

Is it possible to compute an (c, f)-fold coloring
for graphs in C in polynomial time?

B Would have quite a few algorithmic consequences!
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Thank you for your
attention.
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