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Colouring

An a-colouring of a graph G is a mapping c : V (G )→ N such that

• c(u) 6= c(v) whenever {u, v} is an edge of G ; and

• |c(V (G ))| ≤ a.

Let χ(G ) be the least integer a such that G admits an a-colouring.

What about giving more than one colour to every vertex? A colour shall

not be assigned to two adjacent vertices.
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Set colouring

An (a : b)-colouring of G is a set colouring such that

• |c(v)| ≥ b for every vertex v ; and

• |c(V (G ))| ≤ a.

• An (a : 1)-colouring is simply an a-colouring.

• So χ(G ) is the least integer a such that G admits

an (a : 1)-colouring.
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Naturally

Remark

If G has an (a : b)-colouring, then G has an (am : bm)-colouring for

every m ≥ 1.

It suffices to “duplicate” each colour m times.
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List colouring (Erdős, Rubin & Taylor, 1979)

Each vertex has a list of prescribed colours, and the colour assigned to a

vertex must belong to this list.

Let L : V (G )→ 2N. An L-colouring of G is a colouring c such that

c(v) ∈ L(v) for every vertex v .

A graph G is a-choosable if it has an L-colouring as soon as |L(v)| ≥ a

for every vertex v .

The choice number ch(G ) of G is the least integer a such that G

is a-choosable.

{1, 2} {1, 3} {2, 3}

{1, 2} {1, 3} {2, 3}

Figure 1: χ(K3,3) = 2 and ch(K3,3) = 3.
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List colouring (2)

Naturally, Erdős, Rubin & Taylor also introduced a list version for set

colouring.

A graph G is (a : b)-choosable if for every L : V (G )→ 2N

satisfying |L(v)| ≥ a for every v , there is a set colouring c such that

• c(v) ⊆ L(v) and

• |c(v)| ≥ b for every v .
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Question (Erdős, Rubin & Taylor, 1979)

Remark

The trick used in our previous remark does not extend to the list version!

Question

If G is (a : b)-choosable, must it be also (am : bm)-choosable for

every m ≥ 1?
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A first result

Theorem (Tuza & Voigt, 1996)

If G is (2 : 1)-choosable, then G is (2m : m)-choosable for every m ≥ 1.

The proof relies on a structural characterisation of 2-choosable graphs.

Theorem (Erdős, Rubin & Taylor, 1979)

A connected graph G is 2-choosable if and only if its heart is a single

vertex, or an even cycle, or Θ2,2,2m for some m ≥ 1.

Figure 2: θ2,2,4

7



A first result

Theorem (Tuza & Voigt, 1996)

If G is (2 : 1)-choosable, then G is (2m : m)-choosable for every m ≥ 1.

The proof relies on a structural characterisation of 2-choosable graphs.
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An answer (with Z. Dvǒrák and X. Hu, 2018). . .

Theorem

For every a ≥ 4, there exists a graph Ga that is a-choosable and yet

not (2a : 2)-choosable.
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(4 : 1)-choosable yet not (8 : 2)-choosable
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. . . leaving a question

What for 3-choosable graphs? Is there a 3-choosable graph that is

not (6 : 2)-choosable?
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A related question (Erdős, Rubin & Taylor, 1979)

Question

If G is (a : b)-choosable, is it (c : d)-choosable as soon as c
d >

a
b ?
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Colourings

Write ch:b(G ) be the least integer a such that G is (a : b)-choosable.

Theorem (Gütner & Tarsi, 2009)

For every graph G and every ε > 0, there exists b0 such that if b ≥ b0,

then

ch:b(G ) ≤ b(χ(G ) + ε).

In other words, if b is lage enough then G is

(bχ(G ) + bbεc : b)-choosable.
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So?

Corollary

For every m ≥ 3 and every ` > m, there are G , a and b such that

• G is (a : b)-choosable;

• G is not (` : 1)-choosable; and

• a
b = m < ` = `

1 .

1. G disjoint union of a complete graph of order m − 1 and a complete

bipartite graph of choice number `+ 1.

2. Hence χ(G ) = m − 1 and ch(G ) = `+ 1. In particular, G is

not (` : 1)-choosable.

3. Apply the theorem to G with ε = 1: there exists b such that G is

(b(χ(G ) + 1) : b)-choosable.

4. Notice that b(χ(G ) + 1) = b ·m, and hence setting a := b ·m
finishes to yield the sought numbers a and b.
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Fractional colouring

The fractional chromatic number of G is defined to be

χf (G ) := min
{ a

b
: G has an (a : b)-colouring

}
.

One is naturally tempted to have a list version. Set

chf (G ) := inf
{ a

b
: G is (a : b)-choosable

}
.
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Fractional choosability (Alon, Tuza & Voigt, 1997)

Theorem

For every graph G ,

chf (G ) = χf (G ).
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Question

But is there anything algorithmic in your talk?
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Fractional colourings

Recall that

χf (G ) = min
{ a

b
: G has an (a : b)-colouring

}
.

So, writing χf (G ) = p
q , we know that there exists t ≥ 1 such that G has

a (tp : tq)-colouring. Value of t?
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Triangle-free subcubic graphs

Theorem (with Z. Dvǒrák and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

χf (G ) ≤ 14

5
.

INPUT: a graph G in C := {G : ∆(G ) ≤ 3 and ω(G ) ≤ 2}.

OUTPUT: an (a : b)-colouring of G with a
b ≤

14
5 .

???
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Making it clear

• What we proved is that for every graph G ∈ C, there exists a

positive integer tG such that G admits a (14tG : 5tG )-colouring.

• No absolute bound on tG .

• We can use a (weaker) bound established by C.-H. Liu: every

graph G in C admits a (516 : 180) colouring.

• 516
180 = 43

15 = 14
5 + 1

15 = 2.86666 . . . .

Questions

Is there a fixed integer t such that every graph in C admits a

(14t : 5t)-colouring?

At least, is there a polynomial time colouring that, given a graph in C,

outputs an (a : b)-colouring with a
b ≤

14
5 ?
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Size of the parameters

What happens for arbitrary graphs (forget about C)?

Write χf (G ) = p
q where p and q are co-prime.

It may happen that q is exponential in the size of G .

Theorem (Fisher, 1995)

For every integer k, there is a graph Gk with n := 2k+2 − 1 vertices

and χf (Gk) = p
q where

q >
1.34n+1√

2 log2(n + 1) + 7− ln(2) + ln(log2(n + 1) + 3)/2
.

Take the sequence of Mycielskans of K3.

20
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Bounding from above

Theorem (Chvátal, Garey & Johson, 1978)

Every n-vertex graph G admits an (a : b)-colouring with a
b = χf (G )

and b ≤ nn/2.
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Complexity

• Determining χf is NP-hard.

• Determining χf is polynomial over the class of line graphs (i.e.

colouring edges instead of vertices).

• The complexity of determining χf over the class of total graphs is

open (i.e. colouring both edges and vertices).
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