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An a-colouring of a graph G is a mapping c: V(G) — N such that

e c(u) # c(v) whenever {u, v} is an edge of G; and
o [c(V(G))l <

a.

Let x(G) be the least integer a such that G admits an a-colouring.
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e c(u) # c(v) whenever {u, v} is an edge of G; and
o [c(V(G))l <

a.
Let x(G) be the least integer a such that G admits an a-colouring.

What about giving more than one colour to every vertex? A colour shall
not be assigned to two adjacent vertices.
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Set colouring

An (2 : b)-colouring of G is a set colouring such that

c(v)| > b for every vertex v; and

|
c(V(G))] < a.

An (a: 1)-colouring is simply an a-colouring.

So x(G) is the least integer a such that G admits
an (a: 1)-colouring.



Naturally

Remark
If G has an (a: b)-colouring, then G has an (am : bm)-colouring for
every m > 1.

It suffices to “duplicate” each colour m times.
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vertex must belong to this list.
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Each vertex has a list of prescribed colours, and the colour assigned to a
vertex must belong to this list.

Let L: V(G) — 2N. An L-colouring of G is a colouring ¢ such that
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List colouring (2)

Naturally, Erdés, Rubin & Taylor also introduced a list version for set
colouring.

A graph G is (a : b)-choosable if for every L: V(G) — 2N
satisfying |L(v)| > a for every v, there is a set colouring ¢ such that

e ¢(v) C L(v) and

e |c(v)| > b for every v.
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Question (Erdds, Rubin & Taylor, 1979)

Remark
The trick used in our previous remark does not extend to the list version!

Question
If G is (a: b)-choosable, must it be also (am : bm)-choosable for
every m > 17



A first result

Theorem (Tuza & Voigt, 1996)
If G is (2: 1)-choosable, then G is (2m : m)-choosable for every m > 1.
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A first result

Theorem (Tuza & Voigt, 1996)
If G is (2: 1)-choosable, then G is (2m : m)-choosable for every m > 1.

The proof relies on a structural characterisation of 2-choosable graphs.

Theorem (Erdds, Rubin & Taylor, 1979)
A connected graph G is 2-choosable if and only if its heart is a single
vertex, or an even cycle, or ©3 5 >y, for some m > 1.

Figure 2: 0554



An answer (with Z. Dvofak and X. Hu, 2018)...

Theorem

For every a > 4, there exists a graph G, that is a-choosable and yet
not (2a : 2)-choosable.






.. .leaving a question

What for 3-choosable graphs? Is there a 3-choosable graph that is
not (6 : 2)-choosable?
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A related question (Erdés, Rubin & Taylor, 1979)

Question

If G is (a: b)-choosable, is it (c : d)-choosable as soon as § > 27
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Colourings

Write be the least integer a such that G is (a: b)-choosable.

Theorem (Giitner & Tarsi, 2009)

For every graph G and every ¢ > 0, there exists by such that if b > by,
then
ch.5(G) < b(x(G) +¢).

In other words, if b is lage enough then G is
(bx(G) + | be] : b)-choosable.
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So?

Corollary
For every m > 3 and every ¢ > m, there are G, a and b such that

e G is (a: b)-choosable;

e G is not (¢ :1)-choosable; and
¢

T.

o I=m< =

13



So?

Corollary
For every m > 3 and every ¢ > m, there are G, a and b such that

e G is (a: b)-choosable;

e G is not (¢ :1)-choosable; and
¢

T.

o I=m< =

13



So?

Corollary
For every m > 3 and every ¢ > m, there are G, a and b such that

e G is (a: b)-choosable;

e G is not (¢ :1)-choosable; and

o I=m< = %.

1. G disjoint union of a complete graph of order m — 1 and a complete
bipartite graph of choice number ¢ + 1.
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e G is not (¢ :1)-choosable; and
o I=m< = %.
1. G disjoint union of a complete graph of order m — 1 and a complete
bipartite graph of choice number ¢ + 1.
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not (¢ : 1)-choosable.
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Corollary
For every m > 3 and every ¢ > m, there are G, a and b such that

e G is (a: b)-choosable;

e G is not (¢ : 1)-choosable; and
e Z=m<t=1%
1. G disjoint union of a complete graph of order m — 1 and a complete
bipartite graph of choice number ¢ + 1.
2. Hence x(G) = m —1 and ch(G) = ¢+ 1. In particular, G is
not (¢ : 1)-choosable.
3. Apply the theorem to G with € = 1: there exists b such that G is

(b(x(G) + 1) : b)-choosable.
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Fractional colouring

The fractional chromatic number of G is defined to be

xf(G) := min {% : G hasan (a: b)—colouring}.

One is naturally tempted to have a list version. Set
a

che(G) = inf{b

cGis (a: b)—choosable}.
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Fractional choosability (Alon, Tuza & Voigt, 1997)

Theorem
For every graph G,

Chf(G) = Xf(G).
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But is there anything algorithmic in your talk?
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Fractional colourings

Recall that

Xf(G) = min {% : G has an (a: b)—colouring}.
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Fractional colourings

Recall that
Xf(G) = min {% : G has an (a: b)—colouring}.

So, writing xf(G) = g, we know that there exists t > 1 such that G has

a (tp : tq)-colouring.
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Fractional colourings

Recall that
Xf(G) = min {% : G has an (a: b)—colouring}.

So, writing xf(G) = g, we know that there exists t > 1 such that G has

a (tp : tg)-colouring. Value of t?
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Triangle-free subcubic graphs

Theorem (with Z. Dvotak and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

ol R

xf(G) <
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xf(G) <

ol R

INPUT: a graph G in C:={G : A(G) <3 and w(G) < 2}.
OUTPUT: an (a: b)-colouring of G with 2 < %,
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Triangle-free subcubic graphs

Theorem (with Z. Dvotak and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

xf(G) <

ol R

INPUT: a graph G in C:={G : A(G) <3 and w(G) < 2}.
OUTPUT: an (a: b)-colouring of G with 2 < %,

77
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Making it clear

e What we proved is that for every graph G € C, there exists a
positive integer tg such that G admits a (14tg : 5tg)-colouring.
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Making it clear

e What we proved is that for every graph G € C, there exists a
positive integer tg such that G admits a (14t : 5t¢)-colouring.

e No absolute bound on t¢.

e We can use a (weaker) bound established by C.-H. Liu: every

graph G in C admits a (516 : 180) colouring.

516 __ 43 _ 14 | 1 _
750 — 15 — 5 + 35 = 2.86666. ...

Questions

Is there a fixed integer t such that every graph in C admits a
(14t : 5t)-colouring?
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Making it clear

e What we proved is that for every graph G € C, there exists a
positive integer tg such that G admits a (14t : 5t¢)-colouring.

e No absolute bound on t¢.

e We can use a (weaker) bound established by C.-H. Liu: every
graph G in C admits a (516 : 180) colouring.

o =R =Y =286666....

Questions

Is there a fixed integer t such that every graph in C admits a
(14t : 5t)-colouring?

At least, is there a polynomial time colouring that, given a graph in C,
o g 3 a 14
outputs an (a: b)-colouring with 2 < =7
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Size of the parameters

What happens for arbitrary graphs (forget about C)?
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Size of the parameters

What happens for arbitrary graphs (forget about C)?
Write xr(G) = g where p and g are co-prime.

It may happen that g is in the size of G.
Theorem (Fisher, 1995)

For every integer k, there is a graph Gy with n := 2k*2 — 1 vertices
and xr(Gk) = £ where

- 1.347+1
q .
V/2log,(n+1) +7 — In(2) + In(log,(n + 1) + 3)/2
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Size of the parameters

What happens for arbitrary graphs (forget about C)?
Write xr(G) = g where p and g are co-prime.

It may happen that g is in the size of G.
Theorem (Fisher, 1995)

For every integer k, there is a graph Gy with n := 2k*2 — 1 vertices
and xr(Gk) = £ where

- 1.347+1
q .
V/2log,(n+1) +7 — In(2) + In(log,(n + 1) + 3)/2

Take the sequence of Mycielskans of Kj3.
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Bounding from above

Theorem (Chvatal, Garey & Johson, 1978)
Every n-vertex graph G admits an (a : b)-colouring with 2 = x((G)
and b < n"/2.

21



Complexity

e Determining xr is NP-hard.
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Complexity

e Determining xr is NP-hard.

e Determining xr is polynomial over the class of line graphs (i.e.
colouring edges instead of vertices).

e The complexity of determining x¢ over the class of total graphs is
open (i.e. colouring both edges and vertices).
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