(a: b)-choosability & fractional colourings

Colloque pour Michel

11 octobre 2018

An *a*-colouring of a graph G is a mapping $c \colon V(G) \to \mathbf{N}$ such that

- $c(u) \neq c(v)$ whenever $\{u, v\}$ is an edge of G; and
- $|c(V(G))| \leq a$.

Let $\chi(G)$ be the least integer a such that G admits an a-colouring.

An *a*-colouring of a graph G is a mapping $c \colon V(G) \to \mathbf{N}$ such that

- $c(u) \neq c(v)$ whenever $\{u, v\}$ is an edge of G; and
- $|c(V(G))| \leq a$.

Let $\chi(G)$ be the least integer a such that G admits an a-colouring.

What about giving more than one colour to every vertex? A colour shall not be assigned to two adjacent vertices.

An (a: b)-colouring of G is a set colouring such that

- $|c(v)| \ge b$ for every vertex v; and
- $|c(V(G))| \leq a$.

An (a: b)-colouring of G is a set colouring such that

- $|c(v)| \ge b$ for every vertex v; and
- $|c(V(G))| \leq a$.
- An (a : 1)-colouring is simply an a-colouring.
- So χ(G) is the least integer a such that G admits an (a : 1)-colouring.

Remark

If G has an (a : b)-colouring, then G has an (am : bm)-colouring for every $m \ge 1$.

It suffices to "duplicate" each colour m times.

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

Let $L: V(G) \to 2^{\mathbb{N}}$. An *L*-colouring of *G* is a colouring *c* such that $c(v) \in L(v)$ for every vertex *v*.

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

Let $L: V(G) \to 2^{\mathbb{N}}$. An *L*-colouring of *G* is a colouring *c* such that $c(v) \in L(v)$ for every vertex *v*.

A graph G is a-choosable if it has an L-colouring as soon as $|L(v)| \ge a$ for every vertex v.

The choice number ch(G) of G is the least integer a such that G is a-choosable.

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

Let $L: V(G) \to 2^{\mathbb{N}}$. An *L*-colouring of *G* is a colouring *c* such that $c(v) \in L(v)$ for every vertex *v*.

A graph G is a-choosable if it has an L-colouring as soon as $|L(v)| \ge a$ for every vertex v.

The choice number ch(G) of G is the least integer a such that G is a-choosable.

Naturally, Erdős, Rubin & Taylor also introduced a list version for set colouring.

A graph G is (a : b)-choosable if for every $L: V(G) \to 2^{\mathbb{N}}$ satisfying $|L(v)| \ge a$ for every v, there is a set colouring c such that

- $c(v) \subseteq L(v)$ and
- $|c(v)| \ge b$ for every v.

Remark

The trick used in our previous remark does not extend to the list version!

Remark

The trick used in our previous remark does not extend to the list version!

Question

If G is (a : b)-choosable, must it be also (am : bm)-choosable for every $m \ge 1$?

A first result

Theorem (Tuza & Voigt, 1996)

If G is (2:1)-choosable, then G is (2m:m)-choosable for every $m \ge 1$.

A first result

Theorem (Tuza & Voigt, 1996)

If G is (2:1)-choosable, then G is (2m:m)-choosable for every $m \ge 1$.

The proof relies on a structural characterisation of 2-choosable graphs.

Theorem (Erdős, Rubin & Taylor, 1979) A connected graph *G* is 2-choosable if and only if its heart is a single

vertex, or an even cycle, or $\Theta_{2,2,2m}$ for some $m \ge 1$.

A first result

Theorem (Tuza & Voigt, 1996)

If G is (2:1)-choosable, then G is (2m:m)-choosable for every $m \ge 1$.

The proof relies on a structural characterisation of 2-choosable graphs.

Theorem (Erdős, Rubin & Taylor, 1979) A connected graph *G* is 2-choosable if and only if its heart is a single vertex, or an even cycle, or $\Theta_{2,2,2m}$ for some $m \ge 1$.

Figure 2: $\theta_{2,2,4}$

Theorem

For every $a \ge 4$, there exists a graph G_a that is *a*-choosable and yet not (2a : 2)-choosable.

(4:1)-choosable yet not (8:2)-choosable

What for 3-choosable graphs? Is there a 3-choosable graph that is not (6:2)-choosable?

Question

If G is (a:b)-choosable, is it (c:d)-choosable as soon as $\frac{c}{d} > \frac{a}{b}$?

Write $ch_{:b}(G)$ be the least integer a such that G is (a : b)-choosable.

Theorem (Gütner & Tarsi, 2009)

For every graph G and every $\varepsilon > 0$, there exists b_0 such that if $b \ge b_0$, then

 $\operatorname{ch}_{:b}(G) \leq b(\chi(G) + \varepsilon).$

In other words, if *b* is lage enough then *G* is $(b\chi(G) + \lfloor b\varepsilon \rfloor : b)$ -choosable.

Corollary

- G is (a : b)-choosable;
- G is not $(\ell : 1)$ -choosable; and
- $\frac{a}{b} = m < \ell = \frac{\ell}{1}$.

Corollary

- G is (a : b)-choosable;
- G is not $(\ell : 1)$ -choosable; and
- $\frac{a}{b} = m < \ell = \frac{\ell}{1}$.
- 1. G disjoint union of a complete graph of order m-1 and a complete bipartite graph of choice number $\ell + 1$.

Corollary

- G is (a : b)-choosable;
- G is not $(\ell : 1)$ -choosable; and
- $\frac{a}{b} = m < \ell = \frac{\ell}{1}$.
- 1. G disjoint union of a complete graph of order m-1 and a complete bipartite graph of choice number $\ell+1$.
- 2. Hence $\chi(G) = m 1$ and $ch(G) = \ell + 1$. In particular, G is not $(\ell : 1)$ -choosable.

Corollary

- G is (a : b)-choosable;
- G is not $(\ell : 1)$ -choosable; and
- $\frac{a}{b} = m < \ell = \frac{\ell}{1}$.
- 1. G disjoint union of a complete graph of order m-1 and a complete bipartite graph of choice number $\ell + 1$.
- Hence χ(G) = m − 1 and ch(G) = ℓ + 1. In particular, G is not (ℓ : 1)-choosable.
- 3. Apply the theorem to G with $\varepsilon = 1$: there exists b such that G is $(b(\chi(G) + 1) : b)$ -choosable.

Corollary

- G is (a : b)-choosable;
- G is not $(\ell : 1)$ -choosable; and
- $\frac{a}{b} = m < \ell = \frac{\ell}{1}$.
- 1. G disjoint union of a complete graph of order m-1 and a complete bipartite graph of choice number $\ell+1$.
- Hence χ(G) = m − 1 and ch(G) = ℓ + 1. In particular, G is not (ℓ : 1)-choosable.
- 3. Apply the theorem to G with $\varepsilon = 1$: there exists b such that G is $(b(\chi(G) + 1) : b)$ -choosable.
- Notice that b(χ(G) + 1) = b ⋅ m, and hence setting a := b ⋅ m finishes to yield the sought numbers a and b.

The fractional chromatic number of G is defined to be

$$\chi_f(G) \coloneqq \min\left\{\frac{a}{b} : G \text{ has an } (a:b)\text{-colouring}\right\}.$$

One is naturally tempted to have a list version. Set

$$ch_f(G) := inf\left\{\frac{a}{b} : G \text{ is } (a:b)\text{-choosable}\right\}.$$

Theorem

For every graph G,

 $\operatorname{ch}_f(G) = \chi_f(G).$

Question

But is there *anything algorithmic* in your talk?

Recall that

$$\chi_f(G) = \min\left\{\frac{a}{b} : G \text{ has an } (a:b)\text{-colouring}\right\}$$

Recall that

$$\chi_f(G) = \min\left\{\frac{a}{b}: G \text{ has an } (a:b)\text{-colouring}\right\}.$$

So, writing $\chi_f(G) = \frac{p}{q}$, we know that there exists $t \ge 1$ such that G has a (tp: tq)-colouring.

Recall that

$$\chi_f(G) = \min\left\{\frac{a}{b}: G \text{ has an } (a:b)\text{-colouring}\right\}.$$

So, writing $\chi_f(G) = \frac{p}{q}$, we know that there exists $t \ge 1$ such that G has a (tp: tq)-colouring. Value of t?

Theorem (with Z. Dvořák and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

$$\chi_f(G) \leq \frac{14}{5}.$$

Theorem (with Z. Dvořák and J. Volec, 2014) If *G* has maximum degree at most 3 and no triangles, then

$$\chi_f(G) \leq \frac{14}{5}.$$

INPUT: a graph G in $C := \{G : \Delta(G) \le 3 \text{ and } \omega(G) \le 2\}.$ **OUTPUT:** an (a : b)-colouring of G with $\frac{a}{b} \le \frac{14}{5}$. **Theorem (with Z. Dvořák and J. Volec, 2014)** If *G* has maximum degree at most 3 and no triangles, then

$$\chi_f(G) \leq \frac{14}{5}.$$

INPUT: a graph G in $C := \{G : \Delta(G) \le 3 \text{ and } \omega(G) \le 2\}.$ **OUTPUT:** an (a : b)-colouring of G with $\frac{a}{b} \le \frac{14}{5}$.

???

What we proved is that for every graph G ∈ C, there exists a positive integer t_G such that G admits a (14t_G : 5t_G)-colouring.

- What we proved is that for every graph G ∈ C, there exists a
 positive integer t_G such that G admits a (14t_G : 5t_G)-colouring.
- No absolute bound on t_G .

- What we proved is that for every graph G ∈ C, there exists a
 positive integer t_G such that G admits a (14t_G : 5t_G)-colouring.
- No absolute bound on t_G .
- We can use a (weaker) bound established by C.-H. Liu: every graph *G* in *C* admits a (516 : 180) colouring.

- What we proved is that for every graph G ∈ C, there exists a
 positive integer t_G such that G admits a (14t_G : 5t_G)-colouring.
- No absolute bound on t_G .
- We can use a (weaker) bound established by C.-H. Liu: every graph *G* in *C* admits a (516 : 180) colouring.
- $\frac{516}{180} = \frac{43}{15} = \frac{14}{5} + \frac{1}{15} = 2.86666\dots$

- What we proved is that for every graph G ∈ C, there exists a
 positive integer t_G such that G admits a (14t_G : 5t_G)-colouring.
- No absolute bound on t_G .
- We can use a (weaker) bound established by C.-H. Liu: every graph *G* in *C* admits a (516 : 180) colouring.
- $\frac{516}{180} = \frac{43}{15} = \frac{14}{5} + \frac{1}{15} = 2.86666\dots$

Questions

Is there a fixed integer t such that every graph in C admits a (14t:5t)-colouring?

- What we proved is that for every graph G ∈ C, there exists a
 positive integer t_G such that G admits a (14t_G : 5t_G)-colouring.
- No absolute bound on t_G .
- We can use a (weaker) bound established by C.-H. Liu: every graph *G* in *C* admits a (516 : 180) colouring.
- $\frac{516}{180} = \frac{43}{15} = \frac{14}{5} + \frac{1}{15} = 2.86666\dots$

Questions

Is there a fixed integer t such that every graph in C admits a (14t:5t)-colouring?

At least, is there a polynomial time colouring that, given a graph in C, outputs an (a:b)-colouring with $\frac{a}{b} \leq \frac{14}{5}$?

What happens for arbitrary graphs (forget about C)?

What happens for arbitrary graphs (forget about C)? Write $\chi_f(G) = \frac{p}{q}$ where p and q are co-prime. What happens for arbitrary graphs (forget about C)? Write $\chi_f(G) = \frac{p}{q}$ where p and q are co-prime. It may happen that q is exponential in the size of G. What happens for arbitrary graphs (forget about C)?

Write $\chi_f(G) = \frac{p}{q}$ where p and q are co-prime.

It may happen that q is exponential in the size of G.

Theorem (Fisher, 1995)

For every integer k, there is a graph G_k with $n := 2^{k+2} - 1$ vertices and $\chi_f(G_k) = \frac{p}{q}$ where

$$q > \frac{1.34^{n+1}}{\sqrt{2\log_2(n+1) + 7 - \ln(2) + \ln(\log_2(n+1) + 3)/2}}$$

What happens for arbitrary graphs (forget about C)?

Write $\chi_f(G) = \frac{p}{q}$ where p and q are co-prime.

It may happen that q is exponential in the size of G.

Theorem (Fisher, 1995)

For every integer k, there is a graph G_k with $n := 2^{k+2} - 1$ vertices and $\chi_f(G_k) = \frac{p}{q}$ where

$$q > \frac{1.34^{n+1}}{\sqrt{2\log_2(n+1) + 7 - \ln(2) + \ln(\log_2(n+1) + 3)/2}}$$

Take the sequence of Mycielskans of K_3 .

Theorem (Chvátal, Garey & Johson, 1978) Every *n*-vertex graph *G* admits an (a : b)-colouring with $\frac{a}{b} = \chi_f(G)$ and $b \le n^{n/2}$.

• Determining χ_f is NP-hard.

- Determining χ_f is NP-hard.
- Determining χ_f is polynomial over the class of line graphs (*i.e.* colouring edges instead of vertices).

- Determining χ_f is NP-hard.
- Determining χ_f is polynomial over the class of line graphs (*i.e.* colouring edges instead of vertices).
- The complexity of determining χ_f over the class of total graphs is open (*i.e.* colouring both edges *and* vertices).