($a: b$)-choosability \& fractional colourings

Colloque pour Michel

11 octobre 2018

Colouring

An a-colouring of a graph G is a mapping $c: V(G) \rightarrow \mathbf{N}$ such that

- $c(u) \neq c(v)$ whenever $\{u, v\}$ is an edge of G; and
- $|c(V(G))| \leq a$.

Let $\chi(G)$ be the least integer a such that G admits an a-colouring.

Colouring

An a-colouring of a graph G is a mapping $c: V(G) \rightarrow \mathbf{N}$ such that

- $c(u) \neq c(v)$ whenever $\{u, v\}$ is an edge of G; and
- $|c(V(G))| \leq a$.

Let $\chi(G)$ be the least integer a such that G admits an a-colouring.
What about giving more than one colour to every vertex? A colour shall not be assigned to two adjacent vertices.

Set colouring

An (a:b)-colouring of G is a set colouring such that

- $|c(v)| \geq b$ for every vertex v; and
- $|c(V(G))| \leq a$.

Set colouring

An (a: b)-colouring of G is a set colouring such that

- $|c(v)| \geq b$ for every vertex v; and
- $|c(V(G))| \leq a$.
- An (a:1)-colouring is simply an a-colouring.
- So $\chi(G)$ is the least integer a such that G admits an ($a: 1$)-colouring.

Naturally

Remark

If G has an $(a: b)$-colouring, then G has an (am:bm)-colouring for every $m \geq 1$.

It suffices to "duplicate" each colour m times.

List colouring (Erdös, Rubin \& Taylor, 1979)

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

List colouring (Erdös, Rubin \& Taylor, 1979)

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.
Let $L: V(G) \rightarrow 2^{\mathrm{N}}$. An L-colouring of G is a colouring c such that $c(v) \in L(v)$ for every vertex v.

List colouring (Erdős, Rubin \& Taylor, 1979)

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

Let $L: V(G) \rightarrow 2^{\mathrm{N}}$. An L-colouring of G is a colouring c such that $c(v) \in L(v)$ for every vertex v.

A graph G is a-choosable if it has an L-colouring as soon as $|L(v)| \geq a$ for every vertex v.

The choice number $\operatorname{ch}(G)$ of G is the least integer a such that G is a-choosable.

List colouring (Erdös, Rubin \& Taylor, 1979)

Each vertex has a list of prescribed colours, and the colour assigned to a vertex must belong to this list.

Let $L: V(G) \rightarrow 2^{\mathrm{N}}$. An L-colouring of G is a colouring c such that $c(v) \in L(v)$ for every vertex v.

A graph G is a-choosable if it has an L-colouring as soon as $|L(v)| \geq a$ for every vertex v.

The choice number $\operatorname{ch}(G)$ of G is the least integer a such that G is a-choosable.

List colouring (2)

Naturally, Erdős, Rubin \& Taylor also introduced a list version for set colouring.
A graph G is $(a: b)$-choosable if for every $L: V(G) \rightarrow 2^{N}$ satisfying $|L(v)| \geq a$ for every v, there is a set colouring c such that

- $c(v) \subseteq L(v)$ and
- $|c(v)| \geq b$ for every v.

Question (Erdős, Rubin \& Taylor, 1979)

Remark

The trick used in our previous remark does not extend to the list version!

Question (Erdös, Rubin \& Taylor, 1979)

Remark

The trick used in our previous remark does not extend to the list version!

Question

If G is $(a: b)$-choosable, must it be also (am : bm)-choosable for every $m \geq 1$?

A first result

Theorem (Tuza \& Voigt, 1996)

If G is $(2: 1)$-choosable, then G is $(2 m: m)$-choosable for every $m \geq 1$.

A first result

Theorem (Tuza \& Voigt, 1996)

If G is $(2: 1)$-choosable, then G is $(2 m: m)$-choosable for every $m \geq 1$.
The proof relies on a structural characterisation of 2-choosable graphs.

Theorem (Erdős, Rubin \& Taylor, 1979)

A connected graph G is 2-choosable if and only if its heart is a single vertex, or an even cycle, or $\Theta_{2,2,2 m}$ for some $m \geq 1$.

A first result

Theorem (Tuza \& Voigt, 1996)

If G is $(2: 1)$-choosable, then G is $(2 m: m)$-choosable for every $m \geq 1$.
The proof relies on a structural characterisation of 2-choosable graphs.

Theorem (Erdős, Rubin \& Taylor, 1979)

A connected graph G is 2-choosable if and only if its heart is a single vertex, or an even cycle, or $\Theta_{2,2,2 m}$ for some $m \geq 1$.

Figure 2: $\theta_{2,2,4}$

An answer (with Z. Dvorák and X. Hu, 2018). . .

Theorem

For every $a \geq 4$, there exists a graph G_{a} that is a-choosable and yet not (2a: 2)-choosable.
(4:1)-choosable yet not (8:2)-choosable

What for 3-choosable graphs? Is there a 3-choosable graph that is not ($6: 2$)-choosable?

A related question (Erdős, Rubin \& Taylor, 1979)

Question

If G is $(a: b)$-choosable, is it $(c: d)$-choosable as soon as $\frac{c}{d}>\frac{a}{b}$?

Colourings

Write ch:b (G) be the least integer a such that G is $(a: b)$-choosable.
Theorem (Gütner \& Tarsi, 2009)
For every graph G and every $\varepsilon>0$, there exists b_{0} such that if $b \geq b_{0}$, then

$$
c h_{: b}(G) \leq b(\chi(G)+\varepsilon) .
$$

In other words, if b is lage enough then G is

$$
(b \chi(G)+\lfloor b \varepsilon\rfloor: b) \text {-choosable. }
$$

So?

Corollary

For every $m \geq 3$ and every $\ell>m$, there are G, a and b such that

- G is $(a: b)$-choosable;
- G is not ($\ell: 1$)-choosable; and
- $\frac{a}{b}=m<\ell=\frac{\ell}{1}$.

So?

Corollary

For every $m \geq 3$ and every $\ell>m$, there are G, a and b such that

- G is $(a: b)$-choosable;
- G is not ($\ell: 1$)-choosable; and
- $\frac{a}{b}=m<\ell=\frac{\ell}{1}$.

1. G disjoint union of a complete graph of order $m-1$ and a complete bipartite graph of choice number $\ell+1$.

So?

Corollary

For every $m \geq 3$ and every $\ell>m$, there are G, a and b such that

- G is $(a: b)$-choosable;
- G is not $(\ell: 1)$-choosable; and
- $\frac{a}{b}=m<\ell=\frac{\ell}{1}$.

1. G disjoint union of a complete graph of order $m-1$ and a complete bipartite graph of choice number $\ell+1$.
2. Hence $\chi(G)=m-1$ and $\operatorname{ch}(G)=\ell+1$. In particular, G is not ($\ell: 1)$-choosable.

So?

Corollary

For every $m \geq 3$ and every $\ell>m$, there are G, a and b such that

- G is $(a: b)$-choosable;
- G is not $(\ell: 1)$-choosable; and
- $\frac{a}{b}=m<\ell=\frac{\ell}{1}$.

1. G disjoint union of a complete graph of order $m-1$ and a complete bipartite graph of choice number $\ell+1$.
2. Hence $\chi(G)=m-1$ and $\operatorname{ch}(G)=\ell+1$. In particular, G is not ($\ell: 1$)-choosable.
3. Apply the theorem to G with $\varepsilon=1$: there exists b such that G is $(b(\chi(G)+1): b)$-choosable.

So?

Corollary

For every $m \geq 3$ and every $\ell>m$, there are G, a and b such that

- G is $(a: b)$-choosable;
- G is not $(\ell: 1)$-choosable; and
- $\frac{a}{b}=m<\ell=\frac{\ell}{1}$.

1. G disjoint union of a complete graph of order $m-1$ and a complete bipartite graph of choice number $\ell+1$.
2. Hence $\chi(G)=m-1$ and $\operatorname{ch}(G)=\ell+1$. In particular, G is not ($\ell: 1$)-choosable.
3. Apply the theorem to G with $\varepsilon=1$: there exists b such that G is $(b(\chi(G)+1): b)$-choosable.
4. Notice that $b(\chi(G)+1)=b \cdot m$, and hence setting $a:=b \cdot m$ finishes to yield the sought numbers a and b.

Fractional colouring

The fractional chromatic number of G is defined to be

$$
\chi_{f}(G):=\min \left\{\frac{a}{b}: G \text { has an }(a: b) \text {-colouring }\right\} .
$$

One is naturally tempted to have a list version. Set

$$
\operatorname{ch}_{f}(G):=\inf \left\{\frac{a}{b}: G \text { is }(a: b) \text {-choosable }\right\} .
$$

Fractional choosability (Alon, Tuza \& Voigt, 1997)

Theorem

For every graph G,

$$
\operatorname{ch}_{f}(G)=\chi_{f}(G) .
$$

Question

Question

But is there anything algorithmic in your talk?

Fractional colourings

Recall that

$$
\chi_{f}(G)=\min \left\{\frac{a}{b}: G \text { has an }(a: b) \text {-colouring }\right\} .
$$

Fractional colourings

Recall that

$$
\chi_{f}(G)=\min \left\{\frac{a}{b}: G \text { has an }(a: b) \text {-colouring }\right\} .
$$

So, writing $\chi_{f}(G)=\frac{p}{q}$, we know that there exists $t \geq 1$ such that G has a ($t p: t q)$-colouring.

Fractional colourings

Recall that

$$
\chi_{f}(G)=\min \left\{\frac{a}{b}: G \text { has an }(a: b) \text {-colouring }\right\} .
$$

So, writing $\chi_{f}(G)=\frac{p}{q}$, we know that there exists $t \geq 1$ such that G has a ($t p: t q)$-colouring. Value of t ?

Triangle-free subcubic graphs

Theorem (with Z. Dvořák and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

$$
\chi_{f}(G) \leq \frac{14}{5} .
$$

Triangle-free subcubic graphs

Theorem (with Z. Dvořák and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

$$
\chi_{f}(G) \leq \frac{14}{5} .
$$

INPUT: a graph G in $\mathcal{C}:=\{G: \Delta(G) \leq 3$ and $\omega(G) \leq 2\}$.
OUTPUT: an ($a: b$)-colouring of G with $\frac{a}{b} \leq \frac{14}{5}$.

Triangle-free subcubic graphs

Theorem (with Z. Dvořák and J. Volec, 2014)

If G has maximum degree at most 3 and no triangles, then

$$
\chi_{f}(G) \leq \frac{14}{5} .
$$

INPUT: a graph G in $\mathcal{C}:=\{G: \Delta(G) \leq 3$ and $\omega(G) \leq 2\}$.
OUTPUT: an ($a: b$)-colouring of G with $\frac{a}{b} \leq \frac{14}{5}$.

Making it clear

- What we proved is that for every graph $G \in \mathcal{C}$, there exists a positive integer t_{G} such that G admits a $\left(14 t_{G}: 5 t_{G}\right)$-colouring.

Making it clear

- What we proved is that for every graph $G \in \mathcal{C}$, there exists a positive integer t_{G} such that G admits a $\left(14 t_{G}: 5 t_{G}\right)$-colouring.
- No absolute bound on t_{G}.

Making it clear

- What we proved is that for every graph $G \in \mathcal{C}$, there exists a positive integer t_{G} such that G admits a $\left(14 t_{G}: 5 t_{G}\right)$-colouring.
- No absolute bound on t_{G}.
- We can use a (weaker) bound established by C.-H. Liu: every graph G in \mathcal{C} admits a (516:180) colouring.

Making it clear

- What we proved is that for every graph $G \in \mathcal{C}$, there exists a positive integer t_{G} such that G admits a $\left(14 t_{G}: 5 t_{G}\right)$-colouring.
- No absolute bound on t_{G}.
- We can use a (weaker) bound established by C.-H. Liu: every graph G in \mathcal{C} admits a (516:180) colouring.
- $\frac{516}{180}=\frac{43}{15}=\frac{14}{5}+\frac{1}{15}=2.86666 \ldots$.

Making it clear

- What we proved is that for every graph $G \in \mathcal{C}$, there exists a positive integer t_{G} such that G admits a $\left(14 t_{G}: 5 t_{G}\right)$-colouring.
- No absolute bound on t_{G}.
- We can use a (weaker) bound established by C.-H. Liu: every graph G in \mathcal{C} admits a ($516: 180$) colouring.
- $\frac{516}{180}=\frac{43}{15}=\frac{14}{5}+\frac{1}{15}=2.86666 \ldots$.

Questions

Is there a fixed integer t such that every graph in \mathcal{C} admits a
(14t : 5t)-colouring?

Making it clear

- What we proved is that for every graph $G \in \mathcal{C}$, there exists a positive integer t_{G} such that G admits a $\left(14 t_{G}: 5 t_{G}\right)$-colouring.
- No absolute bound on t_{G}.
- We can use a (weaker) bound established by C.-H. Liu: every graph G in \mathcal{C} admits a (516:180) colouring.
- $\frac{516}{180}=\frac{43}{15}=\frac{14}{5}+\frac{1}{15}=2.86666 \ldots$.

Questions

Is there a fixed integer t such that every graph in \mathcal{C} admits a
(14t : 5t)-colouring?
At least, is there a polynomial time colouring that, given a graph in \mathcal{C}, outputs an ($a: b$)-colouring with $\frac{a}{b} \leq \frac{14}{5}$?

Size of the parameters

What happens for arbitrary graphs (forget about \mathcal{C})?

Size of the parameters

What happens for arbitrary graphs (forget about \mathcal{C})?
Write $\chi_{f}(G)=\frac{p}{q}$ where p and q are co-prime.

Size of the parameters

What happens for arbitrary graphs (forget about \mathcal{C})?
Write $\chi_{f}(G)=\frac{p}{q}$ where p and q are co-prime.
It may happen that q is exponential in the size of G.

Size of the parameters

What happens for arbitrary graphs (forget about \mathcal{C})?
Write $\chi_{f}(G)=\frac{p}{q}$ where p and q are co-prime.
It may happen that q is exponential in the size of G.

Theorem (Fisher, 1995)

For every integer k, there is a graph G_{k} with $n:=2^{k+2}-1$ vertices and $\chi_{f}\left(G_{k}\right)=\frac{p}{q}$ where

$$
q>\frac{1.34^{n+1}}{\sqrt{2 \log _{2}(n+1)+7-\ln (2)+\ln \left(\log _{2}(n+1)+3\right) / 2}} .
$$

Size of the parameters

What happens for arbitrary graphs (forget about \mathcal{C})?
Write $\chi_{f}(G)=\frac{p}{q}$ where p and q are co-prime.
It may happen that q is exponential in the size of G.

Theorem (Fisher, 1995)

For every integer k, there is a graph G_{k} with $n:=2^{k+2}-1$ vertices and $\chi_{f}\left(G_{k}\right)=\frac{p}{q}$ where

$$
q>\frac{1.34^{n+1}}{\sqrt{2 \log _{2}(n+1)+7-\ln (2)+\ln \left(\log _{2}(n+1)+3\right) / 2}} .
$$

Take the sequence of Mycielskans of K_{3}.

Bounding from above

Theorem (Chvátal, Garey \& Johson, 1978)
Every n-vertex graph G admits an $(a: b)$-colouring with $\frac{a}{b}=\chi_{f}(G)$ and $b \leq n^{n / 2}$.

Complexity

- Determining χ_{f} is NP-hard.

Complexity

- Determining χ_{f} is NP-hard.
- Determining χ_{f} is polynomial over the class of line graphs (i.e. colouring edges instead of vertices).

Complexity

- Determining χ_{f} is NP-hard.
- Determining χ_{f} is polynomial over the class of line graphs (i.e. colouring edges instead of vertices).
- The complexity of determining χ_{f} over the class of total graphs is open (i.e. colouring both edges and vertices).

