
The TRAG software
by Irène Durand, and
Michael Raskin for the on-line version.

And how to use it.
By Bruno Courcelle

idurand@labri.fr, courcell@labri.fr, raskin@mccme.ru

Second version, July 9th , 2018. Do not distribute.

Introduction

The main purpose of this note is to make usable the notion of fly-automaton for the
verification of monadic second-order (MS) graph properties [3,4].
Graphs must be defined by clique-width terms, hence, somehow, decomposed.
TRAG offers tools for decomposing graphs and defining them by clique-width terms
[1].
Some direct computations are also implemented : chromatic
polynomial, connectedness, acyclicity.
The tools handle incidence graphs and MS2 properties, i.e. those defined by MS
sentences using edge set quantifications [2].

Main references

[1] B. Courcelle, From tree-decompositions to clique-width terms, Discrete Applied

Mathematics, In press. https://hal.archives-ouvertes.fr/hal-01398972

[2] B. Courcelle, Fly-automata for checking MSO2 graph properties. Discrete

Applied Mathematics, 245 (2018) 236-252.
See https://arxiv.org/abs/1511.08605# or https://hal.archives-ouvertes.fr/hal-
01234622

[3] B. Courcelle, I. Durand, Automata for the verification of monadic second-order
graph properties, J. Applied Logic 10 (2012) 368-409. See : http://hal.archives-
ouvertes.fr/hal-00611853/fr/ .

[4] B. Courcelle, I. Durand, Computation by fly-automata beyond monadic second-
order logic, Theoretical Computer Science, 619 (2016) 32-67, See http://hal.archives-
ouvertes.fr/hal-00828211

1

Additional references are in the appendix.

Summary :

1 Easy examples of using TRAG

2 How to input graphs

3 Decompositions

4 Automata based computations

5 Direct computations

6 Incidence graphs

7 Handling MS2 properties.

8 General commands

9 How to build automata (advanced constructions).

10 Appendix

1 Easy examples

Open http://trag.labri.fr

Example 1 : In menu Graphs, select Standard Graphs and choose Gnxn
Choose n = 4 and Accept
In same menu Display graph.
In Graph decomposition, select Heuristic cwd-decomposition.
You get the top part of a term of width 6.
Then try Clique-width decomposition.
You the top part of a term, of exact (optimal) width 5.
In the menu Automata, select color automata and choose
Kcolorability.

Choose K = 2 and Accept
The automaton 2colorability is the current one.
In same menu, select Application and Recognize term
« Recognized » means that the graph is 2-colorable.
By selecting count colorings and with 2 colors, you get 2 colorings.
If you count colorings with 3 colors, you get 7812 colorings.

2

In the menu graph properties, you can ask for Graph hamiltonian. The
answer is yes.

Example 2 : Let us try now the grid G5x5 (Clique-width decomposition
will take some time).
It is not Hamiltonian (so are all grids with odd number of vertices)
and you get this answer.

Example 3 : Let us try now the computed graph ; Petersen.
In Graph decomposition, select Heuristic cwd-decomposition.
You get 6 as an upper-bound to clique-width.
Clique-width decomposition gives the exact value 5.
In the menu Automata, select color automata and choose Kacyclic
colorability.

Choose K=3, Accept, and in Application, select Recognize.
The answer is « not recognized ».
With K = 4, the answer is is « recognized ». Petersen's graph is 4-acyclically
colorable, but not 3-acyclically colorable.
If you select select Enum recognize, the answer is quicker.

2 How to input graphs

Parallel edges get fused. Hence, only simple graphs are faithfully handled. (However,
see Incidence graphs below).

Unoriented graphs :

Loops are not recognized.
Graphs can be input from the menu Graphs : Input nonoriented as a union of
paths.

Example : Paths 1 2 3 7 5 ; 1 3 6 10 9 (8 vertices, 8 edges).
Renumber vertices make them into an interval from 1 to some n. The
renumbering preserves the relative order.

Standard graphs : Paths, cycles, cliques , square grids Gnxn , rectangular grids
Gnxm,
Computed graphs : Petersen, Grunbaum, McGee
Load description in DIMACS format (ascii file).
Example : Vertices from 1 to 8, 10 edges.
c insert here your comments, the name of the graph
p edge 8 10
e 1 2

3

e 1 4
e 1 7
e 1 8
e 2 3
e 2 6
e 2 8
e 3 5

Graph defined by a term (see below).

Graphs can be vizualized at each step of the description by the command Display
graph Planar graphs are planarly displayed (by breaking interesting symmetries is
some cases).

Graphs can be modified by Add path or Remove path. One can add a cycle :
e.g. 1 4 6 1. Each time do not forget to push Accept
Adding a loop by Add path : 1 1 yields an error on display. Adding edge 1 2 if it
exists already has no effect.

Oriented graphs.

They can have loops (but 2 loops at a same vertex get fused into one).
They can be input from the menu Graphs :
Input oriented defines a graph as a union of oriented paths, by Paths.
Paths are oriented as they are inserted within the oriented graph description.
Example : 1 2 3 7 5 ; 1 3 6 10 9 (8 vertices, 8 edges).
Inputing the path 1 1 yields a loop on vertex 1.

Renumber vertices make them into an interval from 1 to n, the number of
vertices.

Load in DIMACS format for oriented graphs.
Example : Vertices from 1 to 5, 6 arcs (oriented edges).
c insert here your comments, the name of the graph
p arc 5 6
a 1 2
a 1 4
a 1 5
a 5 1
a 2 3
a 2 5

The current graph can be modified by Add path or Remove path. Added paths

4

are oriented. One can add a directed cycle by Add path : 1 4 6 1.

A graph can defined by a term (see below).

An unoriented graph can be given a Random orientation. To the opposite,
one can Erase orientation. Two opposite directed edges become a single
undirected one.
Loops cause errors and should be removed beforehand by Remove path.

Naming and saving graphs.

The current graph can be saved in DIMACS format by the command Download
DIMACS. Vertices must be consecutively numbered.

The menu Named objects permits to name the current graph and to retrieve it by
its name. Several graphs can be named during a session. They are lost when closing
the session. But the current graph can be saved, see 8 below.

3 Decompositions

TRAG uses clique-width terms as inputs to automata.

Note on syntax (see examples below) :

oplus(.,.) denotes disjoint union : .
Labels are letters a,b,c … possibly tagged : a^0, a^1,... (see incidence
graphs),
ren_d_a relabels d into a,
add_a->c creates oriented edges from a-labelled vertices to c-labelled ones,
add_a_c creates unoriented edges between a-labelled vertices and c-labelled
ones,
c[6] creates vertex number 6 with label c.

The menu Graph decomposition offers the following algorithms for a graph
previously specified :
Heuristic cwd-decomposition for an oriented or unoriented graph : it
yields a term and displays its width that bounds the exact clique-width.
Clique-width decomposition, yields for an unoriented graph, the (exact)
clique-width and one corresponding term.
Try specific clique-width tries to find a term with the specified number of

5

labels. In both cases, he input graph must have vertices consecutively numbered from
1. Use Renumber vertices if necessary.

CAUTION : These last two algorithms work for graphs with, say, no more than 20
vertices and 40 edges, and « small » clique-width, say 6 (otherwise the servor may
crash).
They are based on reductions to SAT problems solved by GLUCOSE (see reference
[5]). The reduction is due to Heule and Szeider [6].
For larger graphs, use rather Heuristic cwd-decomposition.

Heuristic twd-decomposition, for an unoriented graph, produces a tree-
decomposition, expressed by normal trees, cf. [1]. See Appendix for an example.
Heuristic cwd-twd-decomposition for an unoriented graph, produces a
clique-width term constructed from a tree-decomposition (cf. [1]).
To process oriented graphs, one removes orientation. Tree-width is insensible to
orientation and parallel edges.

The menu terms helps to understand the produced clique-width terms.
It gives several numbers : clique-width, depth, size. Draw shows the
graph with the « final » labelling of vertices.
The term shows the nullaries that specify vertices. Example : c[6] to specify vertex
6 with « initial » label c.

Show multiterm splits a term into subterms, for example, the term
t = add_c->b(oplus(c[6],ren_d_a(ren_c_a(add_a-

>d(add_d->c(
oplus(d[1],add_b->a(add_c-

>a(oplus(a[4],oplus(b[7],c[3])))))))))))
 is t= t0 and splitted as follows :

t0 = add_c->b(oplus(c[6],t1)).
t1 = ren_d_a(ren_c_a(add_a->d(add_d-

>c(oplus(d[1],t2))))).
t2 = add_b->a(add_c->a(oplus(a[4],t3))).
t3 = oplus(b[7],c[3]).

This description shows the corresponding decomposition of the graph and the way
vertices are created (say vertex 6 with label c by the nullary c[6])

Download multiterm saves this sequence of terms into a file.

Use Input multiterm or input term to import a term. It must be copy-

6

pasted in the relevant box.
Then, the command Term to graph converts the term into a graph, that can be
displayed.
Some Standard terms and Computed terms are precomputed for standard
and computed unoriented graphs (see above).

For Annotations see [3]. They are used in coloring algorithms (see below).

For incidence graphs, see below.

If a graph is given by a term t (commands Input term or Input multiterm)
an automaton checks whether t is well-written and does not use edge addition
operations for oriented and unoriented edges (it does not use add_a->b and
add_c_d).

4 Automata based computations

The system allows general fly-automata computations, cf. [3,4].
Some automata concerning coloring problems are implemented.
In all cases, a clique-width term must have been computed as the « current term ».

When an automaton is selected via the menu Automata, one must go to
Application and select :
Recognize : says yes or no, whether the graph has the considered property. The
automaton is run « deterministically ».
Enum recognize : says yes or no. The automaton enumerates the set of states
reached at the root and stops as soon as an accepting one is found. This algorithm
may give a quick answer in case of Yes. Because of the preprocessing, it may take
more time than the previous one.
Compute # : Computes the number of accepting runs
Compute Sp : Computes the spectrum : See Appendix
Compute MSp : Computes the multi-spectrum : See Appendix
Compute SAT : Computes the set of satisfying tuples. See Appendix

Some commands are not available for certain automata.

Color automata :
They only concern unoriented graphs (orientations can be removed, see 2 above).
Coloring : One specifies a number of colors.
Applicable functions are Recognize, Compute #, Compute Sp,
Compute Msp, Compute SAT

7

K-coloring : checks if the graph is K-colorable ; one has to choose the value K =
the number of allowed colors.
Applicable functions are Recognize, Enum recognize,Compute #,
K-coloring with symmetries and annotations :

Same as K-coloring but it requires an annotated term. (Use the Annotation
command, see above. Implements an algorithm by M.Raskin [7]).
counting colorings : gives the number of K-colorings ; one has to choose the
value K.
K-acyclic coloring : checks if the graph is K-acyclically-colorable ; one has
to choose the value K. (Acyclic coloring means that the union of any two color
classes induces a forest).
Show one coloring provides for example, a 3-coloring of the cycle C5 is :

[C1:(1) C2:(2 4) C3:(3 5)]
showing that color C1 is used for vertex 1, color C2 for vertices 2 and 4 and
color C3 for vertices 3 and 5.

Show all colorings yields the list of all such words representing all colorings.

Looking for a term of clique-width at most k recognized by a chosen automaton.

The command Emptyness indicates the existence. Show nonemptyness
witness yields some term of given maximal clique-width.
CAUTION : To be used for « small » bounds on clique-width and « small »
automata.

5 Direct computations

The menu Graph direct computations gives the Chromatic
polynomial, and its value (the chromatic value) for a given number of
colors.
Permits to verify that the previously computed numbers of colorings are correct.
From the menu Graph Properties one can check Hamiltonicity and
connectedness for oriented or unoriented graphs, and acyclicity for
unoriented graphs only.

One need not request a decomposition.

6 Incidence graphs [2]

The Incidence graph Inc(G) of a graph G is bipartite. Its vertex set is VG ∪ EG. The

8

part VG of VG ∪ EG. is known by a bit. See below a worked example.

If G is oriented, its edges are x → e and e → y whenever e is an edge from x to y.

If G is unoriented and loop-free, Inc(G) has an unoriented edge x – e if e is an edge
with an end x.
Edge-representing vertices have degree 2 in both cases.
Multiples edges in G can be distinguished in Inc(G) by distinct edge-representing
vertices.

A bipartite graph H=(V ∪ E,inc), where inc ⊆ V x E ∪ E x V is defined as an inc-
graph iff it is is as follows :

either inc ⊆ V x E and each e in E has degree exactly 2,

or inc ⊆ V x E ∪ E x V and each e in E has indegree 1 and outdegree 1.

In the former case, H =Inc(G) for a loop-free unoriented graph G.
In the latter one, H =Inc(G) for an oriented graph G that may have loops.
In both cases, G may have parallel edges.
Certain of these inc-graphs cannot be defined from graphs G (by the Graphs menu)
because G has no parallel edges. They must be defined directly by terms, in case
one needs to deal with parallel edges and oriented loops.
See the term t below for example.

For the graph C5, the command Optimal incidence cwd-decomposition
yields the term t :

               add_c_d(oplus(ren_c_a(add_a_b(oplus(oplus(add_a_d(oplus(
       a^0[1],d^1[7])),
             ren_b_c(add_a_b(oplus(a^0[2],ren_a_c(add_a_c(oplus(

             oplus(add_b_c(oplus(c^0[3],b^1[8])),
                                     add_c_d(oplus(c^0[4],d^1[10]))),a^1[9]))))))),b^1[6]))),
 c^0[5])

The tag ^0 in labels a^0, c^0 indicates that the corresponding vertices : 1, 2, … 5
are vertices of the original graph.
The tag ^1 in labels a^1, b^1, d^1 indicates that the corresponding vertices :
6,7, … 10 represent edges of the original graph.

Here is a correct incidence term, not produced by Optimal incidence cwd-
decomposition, because of one parallel edge added :

               add_c_d(oplus(ren_c_a(add_a_b(oplus(oplus(add_a_d(oplus(
 a^0[1],

9

oplus(d^1[7], d^1[11])      )),
             ren_b_c(add_a_b(oplus(a^0[2],ren_a_c(add_a_c(oplus(

             oplus(add_b_c(oplus(c^0[3],b^1[8])),
                                     add_c_d(oplus(c^0[4],d^1[10]))),a^1[9]))))))),b^1[6]))),
 c^0[5])

The modified subterm is underlined.

In the menu Terms the command Term to incidence graph determines,
from a clique-width term, the incidence graph of the graph it defines. It works for
oriented and unoriented graphs. The command Incidence term to graph
determines from a correct incidence term (that can be uploaded by Input term) a
graph where parallel edges get fused.

7 MS2 properties

Hamiltonicity (looking for a Hamiltonian cycle ; an MS2 property that is not MS
expressible and is NP-complete) is implemented in different ways for oriented and
unoriented graphs.

For an oriented graph, one must request
Heuristic incidence cwd-decomposition

and then, one chooses the automaton Oriented hamiltonian.

For an unoriented graph, one requests
Heuristic incidence cwd-decomposition or
Optimal incidence cwd-decomposition

and then, one chooses the automaton Unoriented hamiltonian.

8 General commands

Menu Sesssion
Reset,
Cancel a computation (if it takes too much time).
Export

Saves in an ascii file with extension .json the current graph, term, automaton and
computed value (« recognized » or not, number of runs etc.)
Import

Retrieves the file to restaure the session.
Force to server

Restores from your computer a session interrupted for some reason.

10

9 How to build automata (Advanced constructions).

Automata are built by TRAG from existing basic automata by operations
reflecting logical operations (cf [3] for thorough description).
The submenu Formula automata of Automata permits an automatic
construction of a fly-automaton (working for any clique-width term) from a formula.
There are two variants, for oriented and unoriented graphs.

The syntax of formulas is based on that of TPTP (see
http://www.cs.miami.edu/~tptp/). It is described in the Appendix, where examples are
given.

10 Appendix

Normal tree-decompositions

Here is the example of the grid 3x3.

We obtain the following word that describes a normal tree-decomposition.
((8 6) (6 5) (5 4) (4 2) (4 9) (4 7) (2 3) (2 1))

11

(8:NIL 6:(8) 5:(6 8):(6 8) 4:(5 6 8):(5) 2:(4 5 6):(5) 9:(6 8):(6 8) 7:(4 8):(4 8) 3:(2 6):
(2 6) 1:(2 4):(2 4))

The first part :
((8 6) (6 5) (5 4) (4 2) (4 9) (4 7) (2 3) (2 1)) indicates that the tree has nodes 1 to 9
(the vertices), 8 is the root, 5 is a son of 8, 4 has sons 2,7 and 9, 2 has sons 1 and 3,
etc.

The box of a node u contains always u (it is a vertex of the graph), its neighbours
above it on the tree and some other nodes.
The second part, (8:NIL 6:(8) 5:(6 8):(6 8) 4:(5 6 8):(5) 2:(4 5 6)..... shows that the
boxes are as follows :

Node u Box of u Neighbours of u in its box

8, the root 8

6 6,8

5 5,6,8 6,8

4 4,5,6,8 5

2 2,4,5,6 5

7 7,4,8 4,8

9 9,6,8 6,8

3 3,2,6 2,6

1 1,2,4 2,4

The edges of the graph are in red (thin or thick). The edges of the tree are thick, either
red or dotted and black.

Spectrum, Multispectrum and SAT

The spectrum of a property P(X1,...,Xp) is the set of p-tuples of cardinalities of the p-
tuples of sets (X1,...,Xp) that satisfy P.
The multispectrum of P(X1,...,Xp) is the multiset of p-tuples of cardinalities of the p-
tuples of sets (X1,...,Xp) that satisfy P. Hence, each p-tuple of integers is given with
the number of p-tuples of sets that define it.
The satisfying set (query answer) of a property P(X1,...,Xp) is the set of p-tuples of
sets (X1,...,Xp) that satisfy P.

We give small examples.
The term                    add_a_b(oplus(oplus(a[1],oplus(b[2],b[4])),a[3]))
defines the 4-cycle C4

12

It has 18 3-colorings (by Compute #).
The answer to Compute Sp is the string
#(1 2 1) #(2 1 1) #(2 2 0) #(0 2 2) #(1 1 2) #(2 0 2)
It shows 2 types of 3-colorings (6 with the permutations of colors).

The answer to Compute MSp shows :
#(1 2 1):4 #(2 1 1):4 #(2 2 0):2 #(0 2 2):2 #(1 1 2):4 #(2 0 2):2
indicating the numbers of colorings for each 3-tuple of possible cardinalities of color
classes.
We have 18 = 4 + 4 +2 +2 +4 +2.

The answer to Compute SAT shows :

<[0.0.0:3] [0.0.1.0:1] [0.0.1.1:2] [0.1:3]>
<[0.0.0:3] [0.0.1.0:2] [0.0.1.1:1] [0.1:3]>
<[0.0.0:3] [0.0.1.0:1] [0.0.1.1:1] [0.1:3]>
<[0.0.0:3] [0.0.1.0:2] [0.0.1.1:2] [0.1:3]>
… and 14 more.

The sequence [0.0.0:3] [0.0.1.0:1] [0.0.1.1:2] [0.1:3] indicates that the vertex at
position 0.0.0 in Dewey notation in the used term is in the third set, i.e. has color 3.
The vertex at position 0.0.1.0 has color 1. Etc. For colorings, the commands Show
one coloring and Show all colorings are easier to read as they indicate
the vertex number rather than the corresponding Dewey word.

MS formulas in the syntax of TPTP.

Because of the translation of formulas into automata, we will express
universal quantification in terms of existential quantification and
negation.
All variables are of the form X,Y, Z33, Uprime etc and denote sets.
Individual variables are handled as set variables denoting singletons.

Ascii coding of logical connectives :

? there exists
! for all
& and
| or
~ not
<=> equivalent

13

=> implies
<= implied by
= equals
!= not equal to

Blank spaces are not significant. Atomic formulas must start with a
lowercase letter, and variables by an uppercase one.

Existential quantification is written ?[X1,...,Xp]: (...)
Universal quantification is written ![X1,...,Xp]: (...)

The atomic formulas relative to sets are :

X=Y,
X!=Y,
subset(X,Y) meaning that X is a subset of Y,
singleton(X) meaning that X is singleton,
empty(X) meaning that X is empty
card(i,X) meaning that X has cardinality exactly i, and i is a fixed
integer.

The atomic formulas relative to basic graph structure are :
someedge(X,Y) : X,Y are disjoint and there is an edge between

some vertex of X and some vertex of Y ; when dealing with oriented graphs, this
edge is directed from X to Y.

alledges(X,Y) : X,Y are disjoint and there is an edge between
each vertex of X and each vertex of Y ; when dealing with oriented graphs, these
edges are directed from X to Y.

edge(X,Y) : path(X,Y) : X consists of two vertices and there is
an unoriented path between them, all vertices of which are in Y (which implies that X

⊆ Y).
stable(X) : there are no edges between any two vertices, and no

loop incident with a vertex in X,

Set variables can be replaced by set terms with obvious meanings :
intersection(X,Y)
union(X,Y),
difference(X,Y) denoting X-Y,
xor(X,Y) denoting the symmetric difference of X and Y,
complement(X).

14

Hence, we can write : alledges(union(X,Y),difference(U,Z)).
When considering incidence structures, the variable Edges denotes the edges

in the considered incidence graph. It must be put in the set of declared variables, say
for use in the formula subset(Edges,X) meaning that all edges are in X.

Two constants are empty and universal denoting the empty set and the
full domain. Hence, path(X,universal) means that there is a path between the
two vertices of X (see below for path).

More atomic formulas can be used :

path(X,Y) : X consists of two vertices and there is an unoriented path

between them, all vertices of which are in Y (which implies that X ⊆ Y).

oripath(X1,X2,Y) : X1,X2 are singletons and there is an oriented
path from X1 to X2, all vertices of which are in Y.

connected(X) : X induces a connected graph,

That a graph is regular is not an MS property but can be checked by a fly-
automaton [4]. A corresponding command will be added.

Multi-formulas : A formula is split into subformulas for readability and smaller
size. Each component, including the main one, usually put first, must be named with
a possibly empty list of arguments. See Examples 2 and 4.

The submenu Formula Automata of Automata
has 4 commands for oriented or nonoriented graphs and possibly, multi-

formulas.
For multiformulas, the command Expand opens a large window to paste the

formula. Then, Accept, the automaton is (hopefully) constructed.

Example 1 : A formula expressing that an unoriented graph is complete.

~?[X1,X2]: (singleton(X1) & singleton(X2) &
~subset(X1,X2) & ~edge(X1,X2))

Example 2 : A multi-formula expressing that the graph is bipartite :

bipartite() : ?[X,Y]:(st(X)& st(Y)&(~ ?[U] :
(singleton(U) & ((subset(U,X)& subset(U,Y)) |
 (~ subset(U,X) & ~ subset(U,Y)))))).
st(X) : ~?[U,V]: (subset(U,X) & subset(V,X) &

15

edge(U,V)).

Here, the stability predicate is defined as st(X)and used also as st(Y) in
the main formula, via a substitution of variable.

Example 3 : Good 3-colorings of oriented graphs :

This property says that there is a coloring with colors 1,2,3 such that all edges
are directed from 1 to 2, 2 to 3 and 3 to 1. Hence, the colors of ends determine the
directions of edges.

?[X,Y] : (empty(intersection(X,Y)) & ![U,V]: (
edge(U,V) => ((subset(U,X) & subset(V,Y)) |

(subset(U,Y) & ~subset(V,X) & ~subset(V,Y)) |
(~subset(U,X) & ~subset(U,Y) & subset(V,X)))))

Verification : the directed cycles with 3 and 6 edges are recognized but the
one with 5 edges is not.

Example 4 : the existence of a path between two vertices.

This example concerns unoriented graphs. We consider the property
path2(x1,x2,Y) simpler to write than path(X,Y) meaning that :

x1 and x2 are distinct vertices and there is an unoriented path between x1
and x2,

all vertices of which are in Y (which implies that x1 and x2 are in Y).
x1 and x2 will be handled as singleton sets X1 and X2.

Let the auxiliary property closed(U,Y) mean that : U ⊆ Y and for all

vertices u in U and v in Y, if u in U and v in edge(u,v) holds, then v is in U

equivalently : U ⊆ Y and there does not exist u,v that are neighbours with u is

in U and v in Y-U.

Then, path2(x1,x2,Y) is equivalent to :
 x2 is not x1 and, for every U such that closed(U,Y) holds, if x1 is in U,
then x2 is in U.

The auxiliary formula q(Z1,Z2,W) means : for every U such that
closed(U,W) holds, if Z1 is included in U, then Z2 is included in U.

16

Hence, we can define path2(X1,X2,Y) by the following multi-formula
consisting of three formulas :

path2(X1,X2,Y): (singleton(X1) & singleton(X2) &
subset(X1,Y) & subset(X2,Y) & ~subset(X1,X2) &
q(X1,X2,Y)).

q(Z1,Z2,W): ~?[U]: (subset(Z1,U) & ~subset(Z2,U)&
closed(U,W)).

closed(U,W): subset(U,W)& ~?[U1,W1]: (subset(U1,U)&
subset(W1,W)& ~subset(W1,U) & edge(U1,W1)).

Additional references

[5] G. Audemard and Laurent Simon, On the Glucose SAT solver. International

Journal on Artificial Intelligence Tools 27 (2018) 1-25.

[6] M. Heule and S. Szeider, A SAT approach to clique-width. ACM Trans. Comput.

Log.16 (2015) 24:1-24:27.

[7] M. Raskin, Enumerating colourings via clique-width and colour renaming, Slides.

17

